[1] SUPPE J. Principles of structural geology[M]. Englewood Cliffs, N J:Prentice-Hall, Inc., 1985:341-367. [2] SHAW J H, HOOK S C, SUPPE J. Structural trend analysis by axial surface mapping[J]. AAPG Bulletin, 1994, 78(5):700-721. doi:10.1306/a25fe38d-171b-11d7-8645000102c1865d [3] SHAW J H, HOOK S C, SUPPE J. Structural trend analysis by axial surface mapping:Reply[J]. AAPG Bulletin, 1996, 80(5):780-787. [4] 漆家福,杨桥,童亨茂,等. 构造因素对半地堑盆地的层序充填的影响[J]. 地球科学——中国地质大学学报, 1997, 22(6):603-608. QI Jiafu, YANG Qiao, TONG Hengmao, et al. Sequence construction response to tectonic process in extensional half-garben basin[J]. Earth Science-Journal of China University of Geosciences, 1997, 22(6):603-608. [5] 张岳桥,赵越,董树文,等. 中国东部及邻区早白垩世裂陷盆地构造演化阶段[J]. 地学前缘, 2004, 11(3):123-133. doi:10.3321/j.issn:1005-2321.2004.03.014 ZHANG Yueqiao, ZHAO Yue, DONG Shuwen, et al. Tectonic evolution stages of the early Cretaceous rift basins in eastern china and adjacent areas and their geodynamic background[J]. Earth Science Frontiers, 2004, 11(3):123-133. doi:10.3321/j.issn:1005-2321.2004.03.014 [6] 何登发, SUPPE J,贾承造. 断层相关褶皱理论与应用研究新进展[J]. 地学前缘, 2005, 12(4):353-364. doi:10.3321/j.issn:1005-2321.2005.04.004 HE Dengfa, SUPPE J, JIA Chengzao. New advances in theory and application of fault-related folding[J]. Earth Science Frontiers, 2005, 12(4):353-364. doi:10.3321/j.issn:1005-2321.2005.04.004 [7] 郭卫星,漆家福. 同沉积褶皱生长地层中沉积与构造关系[J]. 现代地质,2008,22(4):520-524. doi:10.3969/j.issn.1000-8527.2008.04.005 GUO Weixing, QI Jiafu. Relationship of sedimentation and tectonism in growth strata developed by growth folding[J]. Geoscience, 2008, 22(4):520-524. doi:10.3969/j.issn.1000-8527.2008.04.005 [8] 陈玮常,闫晶晶,孙冠宇,等. 南堡凹陷老爷庙地区断裂构造与油气成藏[J]. 西南石油大学学报(自然科学版), 2018, 40(2):46-56. doi:10.11885/j.issn.1674-5086.2016.11.04.02 CHEN Weichang, YAN Jingjing, SUN Guanyu, et al. Fault tectonics and petroleum entrapment in the Laoyemiao Region of the Nanpu Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(2):46-56. doi:10.11885/j.issn.1674-5086.2016.11.04.02 [9] RICH J L. Mechanics of low-angle overthrust faulting as illustrated by Cumberland Thrust Block, Virginia, Kentucky and Tennessee[J]. AAPG Bulletin, 1934, 18(12):1584-1596. [10] SUPPE J. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 1983, 283:684-721. doi:10.1016/0013-7952(89)90033-1 [11] IMBER J, TUCKWELL G W, CHILDS C, et al. Three-dimensional distinct element modelling of relay growth and breaching along normal faults[J]. Journal of Structural Geology, 2004, 26(10):1897-1911. doi:10.1016/j.jsg.2004.02.010 [12] SOLIVA R, BENEDICTO A. A linkage criterion for segmented normal faults[J]. Journal of Structural Geology, 2004, 26, 2251-2267. doi:10.1016/j.jsg.2004.06.008 [13] DULA W F. Geometric models of listric normal faults and rollover folds[J]. AAPG Bulletin, 1991, 75(10):1609-1625. doi:10.1016/0148-9062(92)93666-8 [14] XIAO Hongbing, SUPPE J. Origin of rollover[J]. AAPG Bulletin, 1992, 76:509-529. [15] RENATO M, DARROS de M. Geometry of the hanging wall above a system of listric normal faults:A numerical solution[J]. AAPG Bulletin, 1993, 77(11):1839-1859. [16] WITHJACK M O, ISLAM Q T, POINTE P R L. Normal faults and their hanging-wall deformation:An experimental study[J]. AAPG Bulletin, 1995, 79(1):1-18. doi:10.1306/8d2b1494-171e-11d7-8645000102c1865d [17] WITHJACK M O, CALLAWAY S. Active normal faulting beneath a salt layer:An experimental study of deformation patterns in the cover sequence[J]. AAPG Bulletin, 2000, 84(5):627-651. doi:10.1306/C9EBCE73-1735-11D7-8645000102C1865D [18] SCHLISCHE R W, WITHJACK M O, EISENSTADT G. An experimental study of the secondary deformation produced by oblique-slip normal faulting[J]. AAPG Bulletin, 2002, 86(5):885-906. doi:10.1306/61eedbca-173e-11d7-8645000102c1865d [19] POBLET J, BULNES M. Predicting strain using forward modelling of restored cross-sections:Application to rollover anticlines over listric normal faults[J]. Journal of Structural Geology, 2007, 29, 1960-1970. doi:10.1016/j.jsg.2007.08.003 [20] LONG J J, IMBER J. Geometrically coherent continuous deformation in the volume surrounding a seismically imaged normal fault-array[J]. Journal of Structural Geology, 2010, 32(2):222-234. doi:10.1016/j.jsg.2009.11.009 [21] 蔡佳,姜华,甘华军,等. 南阳凹陷南部边界大断裂活动性及其对沉积的控制[J]. 西安石油大学学报(自然科学版), 2009, 24(4):9-12. doi:10.3969/j.issn.1673-064X.2009.04.002 CAI Jia, JIANG Hua, GAN Huajun, et al. Activities of the boundary major fault in the south of Nanyang Sag and their control effect on deposition[J]. Journal of Xi'an Shiyou University (Natural Science), 2009, 24(4):9-12. doi:10.3969/j.issn.1673-064X.2009.04.002 [22] 夏东领,杨道庆,林社卿,等. 南襄盆地中、新生代构造演化与油气成藏[J]. 油气地质与采收率, 2007, 14(6):32-34. doi:10.3969/j.issn.1009-9603.2007.06.010 XIA Dongling, YANG Daoqing, LIN Sheqing, et al. Tectonic evolution and hydrocarbon accumulation in Mesozoic-Cenozoic Era, Nanxiang Basin[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(6):32-34. doi:10.3969/j.issn.1009-9603.2007.06.010 [23] 蔡佳,王华,罗家群. 基于层序地层格架的南阳凹陷油气成藏模式[J]. 西南石油大学学报(自然科学版), 2011, 33(3):67-73. doi:10.3863/j.issn.1674-5086.2011.03.010 CAI Jia, WANG Hua, LUO Jiaqun. Hydrocarbon ceneration models based on the sequence stratigraphic framework in Nanyang Sag[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(3):67-73. doi:10.3863/j.issn.1674-5086.2011.03.010 [24] LI Shuguang, XIAO Yilin, LIOU Deliang, et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites:Timing and processes[J]. Chemical Geology, 1993, 109(1-4):89-111. doi:10.1016/0009-2541(93)90063-o [25] LI Shuguang, JAGOUTZ E, CHEN Yizhi, et al. SmNd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 2000, 64(6):1077-1093. doi:10.1016/S0016-7037(99)00319-1 [26] 解东宁,何明喜,周立发,等. 东秦岭大别造山带北缘逆冲推覆构造特征及油气前景[J]. 石油与天然气地质,2006,27(1):48-55. doi:10.3321/j.issn:0253-9985.2006.01.009 XIE Dongning, HE Mingxi, ZHOU Lifa, et al. Characteristics of overthrust structures on northern edge of east Qinling-Dabie orogenic belt and hydrocarbon potentials[J]. Oil & Gas Geology, 2006, 27(1):48-55. doi:10.3321/j.issn:0253-9985.2006.01.009 [27] 程学峰,于群达,吴跃通,等. 层序地层学研究及隐蔽油气藏预测以南阳凹陷古近系为例[J]. 新疆地质, 2003, 21(2):206-209. doi:10.3969/j.issn.1000-8845.2003.02.013 CHENG Xuefeng, YU Qunda, WU Yuetong, et al. Sequence stratigraphic research and prediction about subtle pools[J]. Xinjiang Geology, 2003, 21(2):206-209. doi:10.3969/j.issn.1000-8845.2003.02.013 [28] 田纳新,吴官生,李锋,等. 南襄盆地南阳凹陷构造特征与油气分布[J]. 石油天然气学报, 2008, 30(6):51-55. doi:10.3969/j.issn.1000-9752.2008.06.009 TIAN Naxin, WU Guansheng, LI Feng, et al. The structural characteristics and petroleum distribution of Nanyang Sag in Nanxiang Basin[J]. Journal of Oil and Gas Technology, 2008, 30(6):51-55. doi:10.3969/j.issn.1000-9752.2008.06.009 [29] 桂宝玲,何登发,闫福旺,等. 大兴断层的三维几何学与运动学及其对廊固凹陷成因机制的约束[J]. 地学前缘, 2012, 19(5):86-99. GUI Baoling, HE Dengfa, YAN Fuwang, et al. 3D geometry and kinematics of Daxing Fault:Its constraints on the origin of Langgu Depression, Bohaiwan Gulf Basin, China[J]. Earth Science Frontiers, 2012, 19(5):86-99. [30] 高丽明,何登发,桂宝玲,等. 东营凹陷民丰洼陷边界断层三维几何学及运动学特征[J]. 石油勘探与开发, 2014, 41(5):546-553. doi:10.11698/PED.2014.05.05 GAO Liming, HE Dengfa, GUI Baoling, et al. 3D geometrical and kinematic characteristics of boundary faults in Minfeng Subsag, Donying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2014, 41(5):546-553. doi:10.11698/PED.2014.05.05 [31] 张志业,何登发,李智,等. 珠江口盆地开平凹陷边界断层三维几何学与运动学[J]. 地球物理学报, 2018, 61(10):4296-4307. doi:10.6038/cjg2018L0560 ZHANG Zhiye, HE Dengfa, LI Zhi, et al. 3D geometry and kinematics of the boundary fault in the Kaiping Depression, Pearl River Mouth Basin[J]. Chinese Journal of Geophysics, 2018, 61(10):4296-4307. doi:10.6038/cjg2018L0560 [32] 王忠楠,柳广弟,陈婉,等. 利用声波速度计算南阳凹陷古近纪末地层抬升量[J]. 岩性油气藏, 2014, 26(6):69-74. doi:10.3969/j.issn.1673-8926.2014.06.012 WANG Zhongnan, LIU Guangdi, CHEN Wan, et al. Quantification of Late Paleogene Uplift in Nanyang Sag using acoustic velocity[J]. Lithologic Reservoirs, 2014, 26(6):69-74. doi:10.3969/j.issn.1673-8926.2014.06.012 |