西南石油大学学报(自然科学版) ›› 2020, Vol. 42 ›› Issue (6): 124-132.DOI: 10.11885/j.issn.1674-5086.2020.05.12.08

• 油气田人工智能技术与应用专刊 • 上一篇    下一篇

天然气集输异常工况处理的主动学习方法

方宇1, 曹雪梅1, 李宾倩2, 闵帆1, 谯英1   

  1. 1. 西南石油大学计算机科学学院, 四川 成都 610500;
    2. 西南石油大学电气信息学院, 四川 成都 610500
  • 收稿日期:2020-05-12 发布日期:2020-12-21
  • 通讯作者: 方宇,E-mail:fangyu@swpu.edu.cn
  • 作者简介:方宇,1983年生,男,汉族,四川成都人,副教授,硕士,主要从事粗糙集、粒计算及三支决策等方面的研究工作。E-mail:fangyu@swpu.edu.cn;曹雪梅,1996年生,女,汉族,四川江油人,硕士研究生,主要从事三支决策及在油气田开发中应用方面的研究工作。E-mail:201921000427@stu.swpu.edu.cn;李宾倩,1996年生,女,汉族,陕西宝鸡人,硕士研究生,主要从事机器学习方面的研究工作。E-mail:libinqian0606@163.com;闵帆,1973年生,男,汉族,重庆大渡口人,教授,博士,主要从事机器学习、主动学习等方面的研究工作。E-mail:minfanphd@163.com;谯英,1972年生,女,汉族,四川射洪人,副教授,硕士,主要从事油田数据融合和智慧管道巡检数据处理方面的研究工作。E-mail:teachqiao@163.com

Active Learning Method for Abnormal Operating Conditions of Natural Gas Gathering System

FANG Yu1, CAO Xuemei1, LI Binqian2, MIN Fan1, QIAO Ying1   

  1. 1. School of Computer Science, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. School of Electrical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2020-05-12 Published:2020-12-21

摘要: 然气集输系统中出现的各种异常工况对安全生产构成威胁。提出一种针对异常工况的智能处理系统模型。该模型的异常工况类别预测模块采用了主动学习方法,既可实时、准确地判断异常类型,又可为系统向专家推荐合适的处理方案奠定基础。首先,利用SCADA系统实时监控数据并进行异常工况预警。其次,通过主动学习算法对预警异常工况进行分类,从而为构建异常工况推理机提供支撑,进而实现智能决策辅助。实验结果表明,该方法能节约专家成本,很好地识别异常工况类型,提出合理的解决方案。

关键词: 主动学习, 分类, 异常工况, 集输系统, 人工智能, 专家系统

Abstract: Various abnormal operating conditions in natural gas gathering system pose a threat to safe production. This paper proposes an intelligent processing system model for abnormal operating conditions. The abnormal operating conditions classification prediction module of the model adopts the active learning method, which can classify the abnormal type in real time and accurately, and provide a basis for the system to recommend appropriate processing schemes to experts. Firstly, use the SCADA system to monitor data in real time and perform abnormal conditions warning. Secondly, we use the active learning algorithm to classify the early warning of abnormal operating conditions. The classification results provide support for constructing the abnormal working condition inference engine, and then implement intelligent decision-making assistance. The experimental results show that the proposed method can save the cost of experts, identify the types of abnormal operating conditions, and propose a reasonable solution.

Key words: active learning, classification, abnormal operating conditions, natural gas gathering system, artificial intelligence, expert system

中图分类号: