[1] 张亚云. 应用煤岩学基础[M]. 北京:石油工业出版社, 1990. ZHANG Yayun. Fundamentals of applied coal and petrology[M]. Beijing:Petroleum Industry Press, 1990. [2] 杨起. 斯塔赫煤岩学教程[M]. 北京:煤炭工业出版社, 1990. YANG Qi. Course of coal and petrology[M]. Beijing:China Coal Industry Press, 1990. [3] 唐跃. 中国煤层气资源与前景[C]. 北京:中国地质学会, 2013:505-506. TANG Yue. The resource and prospect of coalbed methane in China[C]. Beijing:Geological Society of China, 2013:505-506. [4] 李小刚,杨兆中,梁知,等. 深埋煤层气藏水力压裂增产技术探讨[J]. 天然气与石油, 2011, 29(6):46-48, 54. doi:10.3969/j.issn.1006-5539.2011.06.013 LI Xiaogang, YANG Zhaozhong, LIANG Zhi, et al. Discussion on stimulation technology of deep buried coalbed methane reservoir by hydraulic fracturing[J]. Natural Gas & Oil, 2011, 29(6):46-48, 54. doi:10.3969/j.issn.1006-5539.2011.06.013 [5] 申瑞臣,屈平,杨恒林. 煤层井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术, 2010, 38(3):1-7. doi:10.3969/j.issn.1001-0890.2010.03.001 SHEN Ruichen, QU Ping, YANG Henglin. Advancement and development of coal bed wellbore stability technology[J]. Petroleum Drilling Techniques, 2010, 38(3):1-7. doi:10.3969/j.issn.1001-0890.2010.03.001 [6] 苏现波. 煤层气储集层的孔隙特征[J]. 焦作工学院学报, 1998, 1:6-11. SU Xianbo. Pore characteristics of coal gas reservoir[J]. Journal of Jiaozuo Institute of Technology, 1998, 1:6-11. [7] 刘向君,叶仲斌,陈一健. 岩石弱面结构对井壁稳定性的影响[J]. 天然气工业, 2002, 22(2):41-42. doi:10.3321/j.issn:1000-0976.2002.02.012 LIU Xiangjun, YE Zhongbin, CHEN Yijian. Influence of rock weak surface structure on borehole stability[J]. Natural Gas Industry, 2002, 22(2):41-42. doi:10.3321/j.issn:1000-0976.2002.02.012 [8] 唐立强,杨敬源,王勇,等. 井壁稳定性的断裂损伤力学分析[J]. 哈尔滨工程大学学报, 2007, 28(6):642-646. doi:10.3969/j.issn.10067043.2007.06.008 TANG Liqiang, YANG Jingyuan, WANG Yong, et al. An analysis of the effect of fracture and damage mechanics on wellbore stability[J]. Journal of Harbin Engineering University, 2007, 28(6):642-646. doi:10.3969/j.issn.1006-7043.2007.06.008 [9] DEISMAN N, GENTZIS T, CHALATURNYK R J, et al. Unconventional geomechanical testing on coal for coalbed reservoir well design:The Alberta Foothills and plains[J]. International Journal of Coal Geology, 2008, 75(1):15-26. doi:10.1016/j.coal.2007.12.004 [10] 上海化工学院. 煤化学和煤焦油化学[M]. 上海:上海人民出版社, 1976. Shanghai Institute of Chemical Technology. Coal chemistry and coal tar chemistry[M]. Shanghai:Shanghai People Press, 1976. [11] 朱之培,葛维寰. 煤的化工利用[M]. 北京:化学工业出版社, 1979. ZHU Zhipei, GE Weihuan. Chemical utilization of coal[M]. Beijing:Chemical Industry Press, 1979. [12] 侯光久,王生维,张先进. 晋城成庄矿煤层中节理研究及其意义[J]. 天然气工业, 2005, 25(1):41-43. doi:10.3321/j.issn:1000-0976.2005.01.012 HOU Guangjiu, WANG Shengwei, ZHANG Xianjin. Study on joints in coal seam of Chengzhuang Mine in Jincheng and its significance[J]. Natural Gas Industry, 2005, 25(1):41-43. doi:10.3321/j.issn:1000-0976.2005.01.012 [13] 鲜保安. 煤层气田多分支井优化设计研究[D]. 北京:中国石油大学(北京), 2006. XIAN Baoan. Study on optimization design of multibranch wells in coalbed methane field[D]. Beijing:China University of Petroleum, Beijing, 2006. [14] 康毅力,林峰,唐洪明. 煤层特性和煤岩井壁失稳机理——煤岩学及煤化学研究[M]. 北京:石油工业出版社, 1999. KANG Yili, LIN Feng, TANG Hongming. Coal seam characteristics and instability mechanism of coal wellbore-study on coal petrology and coal chemistry[M]. Beijing:Petroleum Industry Press, 1999. [15] 李恒,何世明,汤明,等. 塔里木盆地深部煤层失稳机理及防塌钻井液技术[J]. 煤田地质与勘探, 2019, 47(4):212-218. doi:10.3969/j.issn.1001-1986.2019.04.032 LI Heng, HE Shiming, TANG Ming, et al. Instability mechanism and anti-sloughing drilling fluid technique for deep coal seam of Tarim Basin[J]. Coal Geology & Exploration, 2019, 47(4):212-218. doi:10.3969/j.issn.1001-1986.2019.04.032 [16] 李文华,白向飞,杨金和,等. 烟煤镜质组平均最大反射率与煤种之间的关系[J]. 煤炭学报, 2006, 31(3):342-345. doi:10.3321/j.issn:0253-9993.2006.03.016 LI Wenhua, BAI Xiangfei, YANG Jinhe, et al. Correspondence between mean maximum reflectance of vitrinite and classification of bituminous coals[J]. Journal of China Coal Society, 2006, 31(3):342-345. doi:10.3321/j.issn:0253-9993.2006.03.016 [17] 金振奎,王春生,王濮,等. 华北地区石炭系-二叠系煤岩储集性能的控制因素[J]. 石油勘探与开发, 2007, 34(5):534-540. doi:10.3321/j.issn:1000-0747.2007.05.004 JIN Zhenkui, WANG Chunsheng, WANG Pu, et al. Controlling factors of reservoir ability of carboniferous and permian coal rocks, North China[J]. Petroleum Exploration and Development, 2007, 34(5):534-540. doi:10.3321/j.issn:1000-0747.2007.05.004 [18] YAO Boyuan, LI Deping. Features and correct application of coal vitrinite reflectance index[J]. Journal of Coal Science & Engineering, 2012, 18(4):400-406. doi:10.-1007/s12404-012-0412-5 [19] 樊明珠,王树华. 煤层气勘探开发中的割理研究[J]. 煤田地质与勘探, 1997, 25(1):29-32. FAN Mingzhu, WANG Shuhua. Coalbed methane exploration and development of cleat study[J]. Journal of Coal Geology and Exploration, 1997, 25(1):29-32. [20] 李嗣贵,邓金根,李明志. 节理破碎地层井壁稳定的离散元分析[J]. 岩石力学与工程学报, 2002, 21(Z1):2139-2143. doi:10.3321/j.issn:1000-6915.2002.z1.054 LI Sigui, DENG Jin'gen, LI Mingzhi. Discrete element analysis of shaft wall stability in joints broken strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(Z1):2139-2143. doi:10.3321/j.issn:1000-6915.2002.z1.054 [21] 金衍,陈勉. 弱面地层的斜井井壁稳定性分析[J]. 中国石油大学学报(自然科学版), 1999, 23(4):33-35. doi:10.3321/j.issn:1000-5870.1999.04.009 JIN Yan, CHEN Mian. Weak surface formation of inclined borehole wall stability analysis[J]. Journal of China University of Petroleum (Edition of Natural Science), 1999, 23(4):33-35. doi:10.3321/j.issn:1000-5870.1999.04.009 [22] 金衍,陈勉,陈治喜. 弱面地层的直井井壁稳定力学模型[J]. 钻采工艺, 1999, 22(3):13-14. JIN Yan, CHEN Mian, CHEN Zhixi. Mechanical model of vertical shaft wall stability in weak surface formation[J]. Drilling & Production Technology, 1999, 22(3):13-14. [23] 陈勉,赵海峰,金衍,等. 非连续介质力学模型预测煤层井眼稳定性[J]. 石油学报, 2013, 34(1):145-150. doi:10.7623/syxb201301018 CHEN Mian, ZHAO Haifeng, JIN Yan, et al. A discontinuous medium mechanical model for the sidewall stability Prediction of coalbeds[J]. Acta Petrolei Sinica, 2013, 34(1):145-150. doi:10.7623/syxb201301018 [24] 张光福,汤明,何世明,等. 煤系地层坍塌压力预测与井眼轨迹优化[J]. 石油钻采工艺, 2019, 41(4):405-411. doi:10.13639/j.odpt.2019.04.001 ZHANG Guangfu, TANG Ming, HE Shiming, et al. Collapse pressure prediction and borehole trajectory optimization for coal measure strata[J]. Oil Drilling & Production Technology, 2019, 41(4):405-411. doi:10.13639/j.odpt.2019.04.001 |