[1] 朱勇, 林冬. 横向管道滑坡有限元模型的建立及验证[J]. 油气储运, 2017, 36(5):563-567. ZHU Yong, LIN Dong. Establishment and verification of finite element model of transverse pipeline landslide[J]. Oil & Gas Storage and Transportation, 2017, 36(5):563-567. [2] HAN B, WANG Z Y, ZHAO H L, et al. Strain-based design for buried pipelines subjected to landslides[J]. Petroleum Science, 2012, 9(2):236-241. doi:10.1007/s12182-012-0204-y [3] 张伯君. 山体滑坡区域内长输埋地油气管道强度研究[D]. 杭州:浙江大学, 2013. ZHANG Bojun. Study on the strength of long-distance buried oil and gas pipeline in landslide area[D]. Hangzhou:Zhejiang University, 2013. [4] 练章富, 李风雷. 滑坡带埋地管道力学强度分析[J]. 西南石油大学学报(自然科学版), 2014, 36(2):165-170. doi:10.11885/j.issn.1674-5086.2013.11.18.02 LIAN Zhangfu, LI Fenglei. Mechanical strength analysis of buried pipeline in landslide zone[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(2):165-170. doi:10.11885/j.issn.1674-5086.2013.11.18.02 [5] DHARMA W, HAMID K, DOUGLAS H. Response of buried steel pipelines subjected to relative axial soil movement[J]. Canadian Geotechnical Journal, 2009, 46(7):735-752. doi:10.1139/T09-019 [6] 刘慧. 滑坡作用下埋地管线反应分析[D]. 大连:大连理工大, 2008. LIU Hui. Response analysis of buried pipeline under landslide[D]. Dalian:Dalian University of Technology, 2008. [7] 王小梅. 地质灾害作用下X80钢质管道应变设计研究[D]. 青岛:中国石油大学(华东), 2014. WANG Xiaomei. Study on strain design of X80 steel pipeline under the action of geological hazard[D]. Qingdao:China University of Petroleum (East China), 2014. [8] ZHENG J Y, ZHANG B J, LIU P F, et al. Failure analysis and safety evaluation of buried pipeline due to deflection of landslide process[J]. Engineering Failure Analysis, 2012(25):156-168. doi:10.1016/j.engfailanal.2012.05.011 [9] 许小路. 滑坡地区油气管线力学效应数值模拟分析[D]. 北京:中国地质大学(北京), 2015. XU Xiaolu. Numerical simulation analysis of mechanical effect of oil and gas pipeline in landslide area[D]. Beijing:China University of Geosciences(Beijing), 2015. [10] ZHANG L S, PANG X F, CAO Y G, et al. Mechanical behavior of pipelines subjecting to horizontal landslides using a new finite element model with equivalent boundary springs[J]. ThinWalled Structures, 2018(124):501-513. doi:10.1016/j.tws.2017.12.019 [11] 胡英国, 卢文波, 陈明, 等. SPH-FEM耦合爆破损伤分析方法的实现与验证[J]. 岩石力学与工程学报, 2015, 34(S1):2740-2748. HU Yingguo, LU Wenbo, CHEN Ming, et al. Implementation and verification of SPH-FEM coupled blasting damage analysis method[J]. Journal of Rock Mechanics and Engineering, 2015, 34(S1):2740-2748. [12] 林晓东, 卢义玉, 汤积仁, 等. 基于SPH-FEM耦合算法的磨料水射流破岩数值模拟[J]. 振动与冲击, 2014, 33(18):170-176. LIN Xiaodong, LU Yiyu, TANG Jiren, et al. Numerical simulation of rock breaking by abrasive water jet based on SPH-FEM coupling algorithm[J]. Journal of Vibration and Shock, 2014, 33(18):170-176. [13] MONAGHAN J J. SPH without a tensile instability[J]. Journal of Computational Physics, 2000, 159(2):290-311. doi:10.1006/jcph.2000.6439 [14] 马爱丽. 基于LS DYNA果园螺旋开沟机模拟试验研究及其优化设计[D]. 武汉:华中农业大学, 2008. MA Aili. Simulation study and optimization design based on LS-DYNA Orchard spiral ditching machine[D]. Wuhan:Huazhong Agricultural University, 2008. [15] 胡海洋. 基于SPH方法的输气管道土质滑坡下的动力响应研究[D]. 成都:西南石油大学, 2019. HU Haiyang. Dynamic response of gas pipeline under soil landslide based on SPH method[D]. Chengdu:Southwest Petroleum University, 2019. [16] 李杭杭. 基于DEM FEM耦合的滑坡作用下管道力学响应分析[D]. 成都:西南石油大学, 2017. LI Hanghang. Mechanical response analysis of pipeline under landslide action based on DEM FEM coupling[D]. Chengdu:Southwest Petroleum University, 2017. [17] 姜雪磊. 高温和爆炸荷载联合作用下架空管道的数值分析[D]. 沈阳:沈阳建筑大学, 2015. JIANG Xuelei. Numerical analysis of overhead pipelines under the combined action of high temperature and explosive load[D]. Shenyang:Shenyang Jianzhu University, 2015. [18] 何杰. 基于LS-DYNA的基础整体滑动对桥梁受力性能的影响及加固措施研究[D]. 重庆:重庆交通大学, 2016. HE Jie. Study on the influence of foundation integral sliding on the mechanical properties of bridge and reinforcement measures based on LS-DYNA[D]. Chongqing:Chongqing Jiaotong University, 2016. |