[1] 李建,李珂,王兵. 粗糙集和神经网络相融合的钻井安全评价模型[J]. 西南石油大学学报(自然科学版), 2017, 39(5):120-128. doi: 10.11885/j.issn.1674-5086.2016.01.19.02 LI Jian, LI Ke, WANG Bing. An evaluation model of drilling safety based on combined rough set and neural network[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(5): 120–128. doi: 10.11885/j.issn.1674-5086.2016.01.19.02 [2] LIU Shuangyue, PENG Li. Analysis of coal mine hidden danger correlation based on improved a priori algorithm[C]. Fourth International Conference on Intelligent Systems Design & Engineering Applications, 2013. doi:10.1109/ISDEA.2013.431 [3] TANG Ning, HU Hao, XU Feng. Personalized safety instruction recommendation for construction workers based on Apriori algorithm[C]. IEEE 11th Annual Computing and Communication Workshop and Conference, 2021, 1197–1203. doi: 10.1109/CCWC51732.2021.9376127 [4] YUAN X. An improved apriori algorithm formining association rules[C]. Advances in Materials, Machinery, Electronics, 2017. [5] 沈艳,张琦智,刘垠,等. 矩阵压缩Apriori算法分析[J]. 计算机应用, 2017, 37(z2):207-209. SHEN Yan, ZHANG Qizhi, LIU Yin, et al. Analysis of matrix compression apriori algorithm[J]. Journal of Computer Applications, 2017, 37(z2): 207–209. [6] AGRAWAL R, IMIELIŃSKI T. Mining association rules between sets of items in large databases[J]. ACM SIGMOD Record, 1993, 22(2): 207–216. [7] HAN Jiawei, PEI Jian, YIN Yiwen. Mining frequent patterns without candidate generation[J]. ACM SIGMOD Record, 2000, 29(2): 1–12. doi: 10.1145/342009.335372 [8] YANG Qinliu, FU Qunchao, WANG Cong, et al. A matrixbased apriori algorithm improvement[C]. Guangzhou: IEEE Third International Conference on Data Science in Cyberspace(DSC), 2018. doi: 10.1109/DSC.2018.00132 [9] 廖纪勇,吴晟,刘爱莲. 基于布尔矩阵约简的Apriori算法改进研究[J]. 计算机工程与科学, 2019, 41(12):2231-2238. doi: 10.3969/j.issn.1007-130X.2019.12.019 LIAO Jiyong, WU Sheng, LIU Ailian. An improved apriori algorithm based on boolean matrix reduction[J]. Computer Engineering & Science, 2019, 41(12): 2231–2238. doi: 10.3969/j.issn.1007-130X.2019.12.019 [10] 杨秋翔,孙涵. 基于权值向量矩阵约简的Apriori算法[J]. 计算机工程与设计, 2018, 39(3):690-693, 762. doi: 10.16208/j.issn1000-7024.2018.03.017 YANG Qiuxiang, SUN Han. Apriori algorithm based on weight vector matrix reduction[J]. Computer Engineering and Design, 2018, 39(3): 690–693, 762. doi: 10.16208/j.issn1000-7024.2018.03.017 [11] WANG Feng, LI Yonghua. An improved apriori algorithm based on the matrix[C]. Wuhan: International Seminar on Future Biomedical Information Engineering, 2008. doi: 10.1109/FBIE.2008.80 [12] 刘芳,吴广潮. 一种基于压缩矩阵的改进Apriori算法[J]. 山东大学学报(工学版), 2018, 48(6):82-88. doi: 10.6040/j.issn.1672-3961.0.2018.206 LIU Fang, WU Guangchao. An improved apriori algorithm based on compression matrix[J]. Journal of Shandong University (Engineering Science), 2018, 48(6): 82–88. doi: 10.6040/j.issn.1672-3961.0.2018.206 [13] 边根庆,王月. 一种基于矩阵和权重改进的Apriori算法[J]. 微电子学与计算机, 2017, 34(1):136-140. BIAN Genqing, WANG Yue. An improved apriori algorithm based on matrix weight[J]. Microelec-tronics and Computer, 2017, 34(1): 136–140. [14] ZHANG Hanxiao, SONG Wei, LIU Lizhen, et al. The application of matrix apriori algorithm in web log mining[C]. IEEE International Conference on Big Data Analysis, 2017. doi: 10.1109/ICBDA.2017.8078821 [15] 苗苗苗,王玉英. 基于矩阵压缩的Apriori算法改进的研究[J]. 计算机工程与应用, 2013, 49(1):159-162. doi: 10.3778/j.issn.1002-8331.1107-0579 MIAO Miaomiao, WANG Yuying. Research on improvement of apriori algorithm based on matrix compression[J]. Computer Engineering and Applications, 2013, 49(1): 159–162. doi: 10.3778/j.issn.1002-8331.1107-05-79 [16] 曹莹,苗志刚. 基于向量矩阵优化频繁项的改进 Apriori算法[J]. 吉林大学学报(理学版), 2016, 54(2):349-353. doi: 10.13413/j.cnki.jdxblxb.2016.02.34 CAO Ying, MIAO Zhigang. Improved apriori algorithm based on vector matrix optimization frequent items[J]. Journal of Jilin University (Science Edition), 2016, 54(2): 349–353. doi: 10.13413/j.cnki.jdxblxb.2016.02.34 [17] 曹宋阳,刘磊,王亚刚. 基于事务权重与布尔矩阵的Apriori改进算法[J]. 软件导刊, 2018, 17(12):69-72. doi: 10.11907/rjdk.182430 CAO Songyang, LIU Lei, WANG Yagang. An improved apriori algorithm based on item sets weight and boolean matrix[J]. Software Guide, 2018, 17(12): 69–72. doi: 10.11907/rjdk.182430 [18] 郑麟. 一种直接生成频繁项集的分治Apriori算法[J]. 计算机应用与软件, 2014(4):297-301. doi: 10.3969/j.issn.1000-386x.2014.04.075 ZHENG Lin. A divide-and-conquer apriori algorithm directly generating frequent itemses[J]. Computer Applications and Software, 2014(4): 297–301. doi: 10.3969/j.issn.1000-386x.2014.04.075 [19] 张健,刘韶涛. 事务约简和2 项集支持度矩阵快速剪枝的 Apriori改进算法[J]. 华侨大学学报(自然科学版), 2017,38(5):143-147. doi:10.11830/ISSN.1000-5013.201510043 ZHANG Jian, LIU Shaotao. Improved apriori algorithm for qiuckly prune by combining transaction reduction with two-item set support martix[J]. Journal of Huaqiao University (Natural Science), 2017, 38(5): 143–147. doi: 10.11830/ISSN.1000-5013.201510043 [20] 黄剑,李明奇,郭文强. 基于Hadoop的Apriori改进算法研究[J]. 计算机科学, 2017, 44(7):262-266, 269. doi: 10.11896/j.issn.1002-137X.2017.07.046 HUANG Jian, LI Mingqi, GUO Wenqiang. Research on improved Apriori algorithm based on Hadoop[J]. Computer Science, 2017, 44(7): 262–266, 269. doi: 10.11896/j.issn.1002-137X.2017.07.046 [21] LIU H, DAI S, JIANG H. Quantitative association rules mining algorithm based on matrix[C]. International Conference on Computational Intelligence and Software Engineering, 2009: 1–4. [22] 马明焕,王新浩,许晓辉,等. 基于数据挖掘技术的事故隐患预警方法研究[J]. 中国安全生产科学技术, 2017, 13(7):11-17. doi: 10.11731/j.issn.1673-193x.2017.07.002 MA Minghuan, WANG Xinhao, XU Xiaohui, et al. Research on early warning method of potential safety hazard based on data mining techniques[J]. Journal of Safety Science and Technology, 2017, 13(7): 11–17. doi: 10.11731/j.issn.1673-193x.2017.07.002 [23] 王新浩,秦绪华,罗云. 基于垂直数据格式的企业隐患预警方法研究[J]. 中国安全科学学报, 2017, 27(2):157-162. doi: 10.16265/j.cnki.issn1003-3033.2017.02.028 WANG Xinhao, QIN Xuhua, LUO Yun. Research on vertical data format based method for enterprise hidden trouble early warning[J]. Journal of Safety Science and Technology, 2017, 27(2): 157–162. doi: 10.16265/j.cnki.issn1003-3033.2017.02.028 |