[1] 王彦玲,王坤,金家锋,等. 纳米材料在压裂液体系中的应用进展[J]. 精细石油化工, 2016, 33(6):63-67. doi: 10.3969/j.issn.1003-9384.2016.06.015 WANG Yangling, WANG Kun, JIN Jiafeng, et al. The application of nanometer material in fracturing fluid system[J]. Specialty Petrochemicals, 2016, 33(6): 63–67. doi: 10.3969/j.issn.1003-9384.2016.06.015 [2] LIANG Feng, GHAITHAN A, AL-MUNTASHERI, et al. Maximizing performance of residue-free fracturing fluids using nanomaterials at high temperatures[C]. SPE 180402-MS, 2016. doi: 10.2118/180402-MS [3] GHAITHAN A, AL-MUNTASHERI, LIANG Feng, et al. Nanoparticle-enhanced hydraulic-fracturing fluids: A review[C]. SPE 185161-PA, 2017. doi: 10.2118/185161-PA [4] 吕其超,张星,周同科,等. SiO2纳米颗粒强化的CO2泡沫压裂液体系[J]. 中国石油大学学报(自然科学版), 2020, 44(3):114-123. doi: 10.3969/j.issn.1673-5005.2020.03.013 LÜ Qichao, ZHANG Xing, ZHOU Tongke, et al. CO2 foam fracturing fluid system enhanced by SiO2 nanoparticles[J]. Journal of China University of Petroleum, 2020, 44(3): 114–123. doi: 10.3969/j.issn.1673-5005.2020.03.013 [5] 李富生,段明,王周玉,等. 纳米材料及技术的应用现状[J]. 西南石油学院学报, 2002, 24(4):56-59. doi: 10.3863/j.issn.1674-5086.2002.04.016 LI Fusheng, DUAN Ming, WANG Zhouyu, et al. Current status of application for nanometer materials and nanotechnology[J]. Journal of Southwest Petroleum Institute, 2002, 24(4): 56–59. doi: 10.3863/j.issn.1674-5086.2002.04.016 [6] LAFITTE V, TUSTIN G, DROCHON B, et al. Nanomaterials in fracturing applications[C]. SPE 155533-MS, 2012. doi: 10.2118/155533-MS [7] 王宇哲,单五一,李勇,等. 国内外纳米颗粒提高采收率技术研究现状[J]. 化学工程师, 2020, 34(8):70-72, 37. doi: 10.16247/j.cnki.23-1171/tq.20200870 WANG Yuzhe, SHAN Wuyi, LI Yong, et al. Research status of enhanced recovery technology for nanoparticles domestic and overseas[J]. Chemical Engineer, 2020, 34(8): 70–72, 37. doi: 10.16247/j.cnki.23-1171/tq.20200870 [8] 牟绍艳,史胜龙,房堃,等. 纳米材料和技术在石油勘探开发领域的应用研究进展[J]. 油田化学, 2019, 36(3):564-570. doi: 10.19346/j.cnki.1000-4092.2019.03.033 MU Shaoyan, SHI Shenglong, FANG Kun, et al. Research progress on the application of nanomaterial and technology in petroleum exploration[J]. Oilfield Chemistry, 2019, 36(3): 564–570. doi: 10.19346/j.cnki.1000-4092.2019.03.033 [9] 刘合,金旭,周德开,等. 功能微纳结构在石油领域潜在应用[J]. 石油勘探与开发, 2018, 45(4):698-704. doi: 10.11698/PED.2018.04.15 LIU He, JIN Xu, ZHOU Dekai, et al. Potential application of functional micro-nano structures in petroleum[J]. Petroleum Exploration and Development, 2018, 45(4): 698–704. doi: 10.11698/PED.2018.04.15 [10] 陈兴隆,秦积舜,李治平. 表面亲油纳米二氧化硅改变岩石表面润湿性的研究[J]. 油田化学, 2005, 22(4):328-331, 348. doi: 10.3969/j.issn.1000-4092.2005.04.012 CHEN Xinglong, QIN Jishun, LI Zhiping. Studies on rock wettability alternation caused by surface modified lipophilic nanometric silica treatment[J]. Oilfield Chemistry, 2005, 22(4): 328–331, 348. doi: 10.3969/j.issn.1000-4092.2005.04.012 [11] 段瑶瑶,杨战伟,杨江,等. 一种新型纳米复合清洁压裂液的研究与应用[J]. 科学技术与工程,2016,16(30):68-72. doi: 10.3969/j.issn.1671-1815.2016.30.011 DUAN Yaoyao, YANG Zhanwei, YANG Jiang, et al. Research and application of a new nanocomposite cleaning fracturing fluid[J]. Science Technology and Engineering, 2016, 16(30): 68–72. doi: 10.3969/j.issn.1671-1815.2016.30.011 [12] 李原,狄勤丰,华帅,等. 纳米流体对储层润湿性反转提高石油采收率研究进展[J]. 化工进展, 2019, 38(8):3612-3620. doi: 10.16085/j.issn.1000-6613.2018-2262 LI Yuan, DI Qinfeng, HUA Shuai, et al. Research progress of reservoirs wettability alteration by using nanofluids for enhancing oil recovery[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3612–3620. doi: 10.16085/j.issn.1000-6613.2018-2262 [13] 曲海莹,刘琦,彭勃,等. 纳米颗粒对CO2泡沫体系稳定性的影响[J]. 油气地质与采收率, 2019, 26(5):120-126. doi:10.13673/j.cnki.cn37-1359/te.2019.05.016 QU Haiying, LIU Qi, PENG Bo, et al. Effects of nanoparticles on the stability of CO2 foam systems[J]. Petroleum Geology and Recovery Efficiency 2019, 26(5): 120–126. doi: 10.13673/j.cnki.cn37-1359/te.2019.05.016 [14] 肖博,蒋廷学,张正道,等. 纳米复合纤维基表面活性剂压裂液性能评价[J]. 科学技术与工程, 2018, 18(29):59-64. doi: 10.3969/j.issn.1671-1815.2018.29.010 XIAO Bo, JIANG Tingxue, ZHANG Zhengdao, et al. Performance evaluation of nanocomposite fiber laden viscoelastic surfactant fracturing fluid[J]. Science Technology and Engineering, 2018, 18(29): 59–64. doi: 10.3969/ j.issn.1671-1815.2018.29.010 [15] AMANULLAH M, AL-ALARFAJ M K, AL-ABDULLATIF Z A. Preliminary test results of Nano-based drilling fluids for oil and gas field application[C]. SPE 139534-MS, 2011. doi: 10.2118/139534-MS [16] CREWS J B, HUANG T. Performance enhancements of viscoelastic surfactant stimulation fluids with nanoparticles[C]. SPE 113533-MS, 2008. doi: 10.2118/113533-MS [17] 王佳. 亲油纳米二氧化硅在压裂前置液中改变岩石润湿研究[J]. 新疆石油天然气, 2012, 8(S):71-74. doi: 10.3969/j.issn.1673-2677.2012.z1.016 WANG Jia. Study of oil-wet nanometer silicon dioxide modifying the core wet-ability with the fracturing preflush[J]. Xinjiang Oil & Gas, 2012, 8(S): 71–74. doi: 10.3969/j.issn.1673-2677.2012.z1.016 [18] 樊英凯,唐善法,郑雅慧,等. 纳米SiO2对磺酸盐Gemini表面活性剂溶液性能的影响[J]. 应用化工,2019,48(9):2057-2060,2064. doi: 10.3969/j.issn.1671-3206.2019.09.009 FAN Yingkai, TANG Shanfa, ZHENG Yahui, et al. Effect of nano-SiO2 on the properties of sulfonate Gemini surfactant solution[J]. Applied Chemical Industry, 2019, 48(9): 2057–2060, 2064. doi: 10.3969/j.issn.1671-3206.2019.09.009 [19] 杨兆中,朱静怡,李小刚,等. 含纳米颗粒的黏弹性表面活性剂泡沫压裂液性能[J]. 科学技术与工程, 2018, 18(10):42-47. doi: 10.3969/j.issn.1671-1815.2018.10.007 YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. The performance of viscoelastic foamed fracturing fluids with nanoparticles[J]. Science Technology and Engineering, 2018, 18(10): 42–47. doi: 10.3969/j.issn.1671-1815.2018.10.007 [20] SAHEED O O, MORTEZA D. Effect of silica nanoparticles on the oil recovery during alternating injection with low salinity water and surfactant into carbonate reservoirs[C]. SPE 201586-MS, 2020. doi: 10.2118/201586-MS [21] ZHANG Chuanbao, WANG Yanling, KOBINA F, et al. Highly efficient nano-crystalline cellulose cross-linker for fracturing fluid system[C]. SPE 196276-MS, 2015. doi: 10.2118/196276-MS [22] HURNAUS T, PLANK J. Crosslinking of guar and HPG based fracturing fluids using ZrO2 nanoparticles[C]. SPE 173778-MS, 2015. doi: 10.2118/173778-MS [23] 张林,沈一丁,杨晓武,等. 聚丙烯酰胺压裂液流变行为影响因素研究[J]. 精细化工,2013,30(11):1264-1268. doi: 10.13550/j.jxhg.2013.11.001 ZHANG Lin, SHEN Yiding, YANG Xiaowu, et al. A Study on the influence factors on the rheological behaviors of polyacrylamide fracturing fluid[J]. Fine Chemicals, 2013, 30(11): 1264–1268. doi: 10.13550/j.jxhg.2013.11.001 [24] 束华东,李小红,张治军. 表面修饰纳米二氧化硅及其与聚合物的作用[J]. 化学进展, 2008, 20(10):1509-1514. SHU Huadong, LI Xiaohong, ZHANG Zhijun. Surface modified nano-silica and its action on polymer[J]. Progress in Chemistry, 2008, 20(10): 1509–1514. |