[1] ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454. doi: 10.11698/PED.2013.04.01 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术[J]. 石油勘探与开发, 2013, 40(4): 385-399, 454. doi: 10.11698/PED.2013.04.01 [2] HUANG Dong, YANG Guang, YANG Zhi, et al. New understanding and development potential of tight oil exploration and development in Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1212-1221. doi: 10.11764/j.issn.1672-1926.2019.07.005 黄东, 杨光, 杨智, 等. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学, 2019, 30(8): 1212-1221. doi: 10.11764/j.issn.1672-1926.2019.07.005 [3] HOLDITCH S A, TSCHIRHART N R. Optimal stimulation treatments in tight gas sands[C]. SPE 96104-MS, 2005. doi: 10.2118/96104-MS [4] LI Ning, ZHANG Shicheng, ZOU Yushi, et al. Experimental analysis of hydraulic fracture growth and acoustic emission response in a layered formation[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1047-1062. doi: 10.1007/s00603-017-1383-z [5] WANG Leizheng, YU Wei. Gas huff and puff process in eagle ford shale: Recovery mechanism study and optimization[C]. SPE 195185, 2019. doi: 10.2118/195185-MS [6] THOMAS L K, DIXON T N, PIERSON R G. Fractured reservoir simulation[J]. Society of Petroleum Engineers Journal, 1983, 23(1): 42-54. doi: 10.2118/9305-PA [7] GILMAN J, KAZEMI H. Improvements in simulation of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1983, 23(4): 695-707. doi: 10.2118/10511-PA [8] KATHEL P, MOHANTY K. Wettability alteration in a tight oil resevoir[J]. Energy | Fuels, 2013, 27: 6460-6468. doi: 10.1021/ef4012752 [9] HABIBI A, BINAZADEH M, DEHGHANPOUR H, et al. Advances in understanding wettability of tight oil formation[C]. SPE 175157, 2015. doi: 10.2118/175157-MS [10] AL HADHRAMI H S, BLUNT M J. Thermally induced wettability alteration to improve oil recovery in fractured reserviors[J]. SPE/DOE Improved Oil Recovery Symposium, 2001, 4(3): 179-186. doi: 10.2118/59289-MS [11] UNSAL E, MASON G, MORROW N R, et al. Co-current and counter-current imbibition in independent tubes of non-axisymmetric geometry[J]. Journal of Colloid and Interface Science, 2007, 306(1): 105-117. doi: 10.1016/j.jcis.2006.10.042 [12] BOURBIAUX B, KALAYDJIAN F. Experimental study of cocurrent and countercurrent flows in natural porous media[J]. SPE Reservoir Engeering, 1990, 5(3): 361-368. doi: 10.2118/18283-PA [13] MENG Qingbang, LIU Huiqing, WANG Jing. A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability[J]. Advances in Geo-energy Research, 2017, 1(1): 1-17. doi: 10.26804/ager.2017.01.01 [14] ZHANG Shaojie, PU Hui, ZHAO Xiaojun. Experimental and numerical study of spontaneous imbibition with different boundary conditions: Cases study of middle bakken and berea cores[J]. Energy | Fuels, 2019, 33(6): 5135- 5146. doi: 10.1021/acs.energyfuels.9b00909 [15] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. doi: 10.1103/PhysRev.17.273 [16] MORROW N R, MASON G. Recovery of oil by spontaneous imbibition[J]. Current Opinion in Colloid and Interface Science, 2001, 6(4): 321-337. doi: 10.1016/S13590294(01)00100-5 [17] BENJAMIN J R. Multiphase flow in permeable media: A pore-scale perspective[J]. Groundwater, 2018, 56(5): 688-689. doi: 10.1111/gwat.12812 [18] BARTLEY J T, RUTH D W. Relative permeability analysis of tube bundle models[J]. Transport in Porous Media, 1999, 36(2): 161-188. doi: 10.1023/A:1006575231732 [19] DONG M, DULLIEN F A L. A new model for immiscible displacement in porous media[J]. Transport in Porous Media, 1997, 27(2): 185-204. doi: 10.1023/A:1006580207133 [20] RUTH D, BARTLEY J. Capillary tube models with interaction between the tubes[J]. Transport in Porous Media, 2011, 86(2): 479-482. doi: 10.1007/s11242-010-9633-5 [21] UNSAL E, MASON G, MORROW N R, et al. Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores[J]. Langmuir, 2009, 25(6): 3387-3395. doi: 10.1021/la803568a [22] SCHECHTER D S, ZHOU D, ORR F M, et al. Low IFT drainage and imbibition[J]. Journal of Petroleum Science and Engineering, 1994, 11(4): 283-300. doi: 10.1016/0920-4105(94)90047-7 [23] SCHECHTER D S, DENQEN Z, ORR F M. Capillary imbibition and gravity drainage in low IFT systems[C]. Dallas: SPE Annual Technical Conference and Exhibition, 1991. doi: 10.2118/22594-MS [24] YAO Tongyu, LI Jishan. Surface activity of mixed system of CTAB and HEDP in reservoir water[J]. Oilfield Chemistry, 2011, 28(3): 272-274, 279. 姚同玉, 李继山. 阳离子表面活性剂与阻垢剂复配体系的表面活性[J]. 油田化学, 2011, 28(3): 272-274, 279. [25] YAO Tongyu, LI Jishan, WANG Jian, et al. Mechanisms and optimal conditions of imbibition in naturally fractured low-permeability reservoir[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 937-940. 姚同玉, 李继山, 王建, 等. 裂缝性低渗透油藏的渗吸机理及有利条件[J]. 吉林大学学报(工学版), 2009, 39(4): 937-940. [26] MATTAX C C, KYTE J R. Imbibition oil recovery from fractured water drive reservoirs[J]. Society of Petroleum Engineers Journal, 1962, 2(2): 177-184. doi: 10.2118/187-PA [27] RAPOPORT L A. Scaling laws for use in design and operation of water-oil flow models[J]. Transactions of the AIME, 1955, 204: 143-150. doi: 10.1016/00134694(55)90094-8 [28] CUIEC L E, BOURBIAUX B, KALAYDJIAN F. Oil recovery by imbibition in low-permeability chalk[J]. SPE Formation Evaluation, 1994, 9(3): 200-208. doi: 10.2118/20259-PA [29] ZHANG Xiaoyun, MORROW N R, MA Shouxiang. Experimental verification of a modified scaling group for spontaneous imbibition[J]. SPE Reservoir Engineering, 1996, 11(4): 280-285. doi: 10.2118/30762-PA [30] KAZEMI H, GILMAN J R, ELSHARKAWY A M. Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfers function[J]. SPE Reservoir Engineering, 1992, 7(2): 219-227. doi: 10.2118/19849-PA [31] MA Shouxiang, MORROW N R, ZHANG Xiaoyun. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science and Engineering, 1997, 18(3-4): 165-178. doi: 10.1016/S0920-4105(97)00020-X [32] LI Kewen, ROLAND N H. Characterization of spontaneous water imbibition into gas-saturated rocks[J]. SPE Journal, 2001, 6(4): 375-384. doi: 10.2118/74703-PA [33] FISCHER H, MORROW N R. Scaling of oil recovery by spontaneous imbibition for wide variation in aqueous phase viscosity with glycerol as the viscosifying agent[J]. Journal of Petroleum Science and Engineering, 2006, 52(1-4): 35-53. doi: 10.1016/j.petrol.2006.03.003 [34] MASON G, FISCHER H, MORROW N R, et al. Correlation for the effect of fluid viscosities on counter-current spontaneous imbibition[J]. Journal of Petroleum Science | Engineering, 2010, 72(1-2): 195-205. doi: 10.1016/j.petrol.2010.03.017 [35] ZHOU D, JIA L, KAMATH J, et al. Scaling of counter-current imbibition processes in low-permeability porous media[J]. Journal of Petroleum Science | Engineering, 2002, 33(1-3): 61-74. doi: 10.1016/S09204105(01)00176-0 [36] LI Kewen, HORNE R N. Generalized scaling approach for spontaneous imbibition: An analytical model[J]. SPE Reservoir Evaluation | Engineering, 2006, 9(3): 251-258. doi: 10.2118/77544-PA [37] STANDNES D C. Calculation of viscosity scaling groups for spontaneous imbibition of water using average diffusivity coefficients[J]. Energy | Fuels, 2009, 23(4): 2149- 2156. doi: 10.1021/ef8010405 [38] PARSON R W, CHANEY P R. Imbibition model studies on water-wet carbonate rocks[J]. Society of Petroleum Engineers Journal, 1966, 6(1): 26-34. doi: 10.2118/1091-PA [39] ZHOU Xiamin, TORSAETER O, XIE Xina, et al. The effect of crude-oil aging time and temperature on the rate of water imbibition and long-term recovery by imbibition[J]. SPE Formation Evaluation, 1995, 10(4): 259-266. doi: 10.2118/26674-PA [40] HAMON G, VIDAL J. Scaling up the capillary imbibition process from laboratory experiments on homogeneous and heterogeneous samples[C]. SPE 15852-MS, 1986. doi: 10.2118/15852-MS [41] BABADAGLI T. Scaling of co-current and counter-current capillary imbibition for surfactant and polymer injection in naturally fractured reservoirs[J]. SPE Journal, 2001, 6(4): 465-478. doi: 10.2118/74702-PA [42] HANDY L L. Determination of effective capillary pressures for porous media from imbibition data[J]. Transactions of the AIME, 1960, 219(1): 75-80. doi: 10.2118/1361-G [43] MA S M, ZHANG X, MORROW N R, et al. Characterization of wettability from spontaneous imbibition measurements[J]. Journal of Canadian Petroleum Technology, 1999, 38(13): 1-8. doi: 10.2118/99-13-49 [44] MIRZAEI P A, MASIHI M, STANDNES D C. An analytic solution for the frontal flow period in 1-D counter-current spontaneous imbibition into fractured porous media including gravity and wettability effects[J]. Transport in Porous Media, 2011, 89(1): 49-62. doi: 10.1007/s11242011-9751-8 [45] LI Shikui, LIU Weidong, ZHANG Haiqin, et al. Experimental study of spontaneous imbibition in low-permeability reservoir[J]. Acta Petrolei Sinica, 2007, 28(2): 109-112. doi: 10.3321/j.issn:0253-2697.2007.02.022 李士奎, 刘卫东, 张海琴, 等. 低渗透油藏自发渗吸驱油实验研究[J]. 石油学报, 2007, 28(2): 109-112. doi: 10.3321/j.issn:0253-2697.2007.02.022 [46] GAUTAM P S, MOHANTY K K. Matrix-fractured transfer through counter-current imbibition in presence of fracture fluid flow[J]. Transport in Porous Media, 2004, 55(3): 309-337. doi: 10.1023/B:TIPM.0000013326.95597.10 [47] CAI Jianchao, HU Xiangyun, STANDNES D C, et al. An analytical model for spontaneous imbibition in fractal porous media including gravity[J]. Colloids | Surfaces A: Physicochemical | Engineering Aspects, 2012, 414(46): 228-233. doi: 10.1016/j.colsurfa.2012.08.047 [48] MIRZAEI P A, KORD S, HAMIDPOUR E, et al. Scaling one and multi-dimensional co-current spontaneous imbibition processes in fractured reservoirs[J]. Fuel, 2017, 196: 458-472. doi: 10.1016/j.fuel.2017.01.120 [49] LEVERETT M C. Capillary behavior in porous solids[J]. Transactions of the AIME, 1941, 142(1): 152-169. doi: 10.2118/941152-G [50] MCWHORTER D B, SUNADA D K. Exact integral solutions for two-phase flow[J]. Water Resources Research, 1990, 26(3): 399-413. doi: 10.1029/WR026i003p00399 [51] KASHCHIEV D, FIROOZABADI A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth, 2003, 250(3-4): 499-515. doi: 10.1016/S00220248(02)02461-2 [52] SCHMID K S, GEIGER S, SORBIE K. Semianalytical solutions for co-current and countercurrent imbibition and dispersion of solutes in immiscible two-phase flow[J]. Water Resources Research, 2011, 47(2): W2550. doi: 10.1029/2010WR009686 [53] ALYAFEI N, MENHALI A A, BLUNT M J. Experimental and analytical investigation of spontaneous imbibition in water-wet carbonates[J]. Transport in Porous Media, 2016, 115(1): 189-207. doi: 10.1007/s11242-016-0761-4 [54] SCHMID K S, GEIGER S. Universal scaling of spontaneous imbibition for arbitrary petrophysical properties: Water-wet and mixed-wet states and Handy's conjecture[J]. Journal of Petroleum Science and Engineering, 2013, 101: 44-61. doi: 10.1016/j.petrol.2012.11.015 [55] ABDUL S A, ELSIDDIG E, ABDUL R S, et al. A review of the phenomenon of counter-current spontaneous imbibition: Analysis and data interpretation[J]. Journal of Petroleum Science and Engineering, 2019, 180: 456-470. doi: 10.1016/j.petrol.2019.05.066 [56] KHAN A S, SIDDIQUI A R, ABD A S, et al. Guidelines for numerically modeling co-and counter-current spontaneous imbibition[J]. Transport in Porous Media, 2018, 124(3): 743-766. doi: 10.1007/s11242-018-1093-3 [57] WANG Jing, LIU Huiqing, XIA Jing, et al. Mechanism simulation of oil displacement by imbibition in fractured reservoirs[J]. Petroleum Exploration and Development, 2017, 44(5): 761-770. doi: 10.11698/PED.2017.05.11 王敬, 刘慧卿, 夏静, 等. 裂缝性油藏渗吸采油机理数值模拟[J]. 石油勘探与开发, 2017, 44(5): 761-770. doi: 10.11698/PED.2017.05.11 [58] RAVARI R R, STRAND S, AUSTAD T. Combined surfactant-enhanced gravity drainage (SEGD) of oil and the wettability alteration in carbonates: The effect of rock permeability and interfacial tension (IFT)[J]. Energy | Fuels, 2011, 25(5): 2083-2088. doi: 10.1021/ef200085t [59] LI Yang, LEI Qun, LIU Xianggui. Characteristics of micro scale nonlinear filtration[J]. Petroleum Exploration and Development, 2011, 38(3): 336-340. doi: 10.1016/S1876-3804(11)60036-0 [60] TIAN Xiaofeng, CHENG Linsong, CAO Renyi, et al. Characteristics of boundary layer in micro and nano throats of tight sandstone oil reservoirs[J]. Chinese Journal of Computational Physics, 2016, 33(6): 717-725. doi: 10.3969/j.issn.1001-246X.2016.06.012 田虓丰, 程林松, 曹仁义, 等. 致密油藏微纳米喉道中的边界层特征[J]. 计算物理, 2016, 33(6): 717-725. doi: 10.3969/j.issn.1001-246X.2016.06.012 [61] JACQUIN C, LEGAIT B, MARTIN J M, et al. Gravity drainage in a fissured reservoir with fluids not in equilibrium[J]. Journal of Petroleum Science | Engineering, 1989, 2(2-3): 217-224. doi: 10.1016/09204105(89)90067-3 [62] ZHOU Linsong, CHENG Linsong, ZENG Baoquan. Scaling model of imbibiton in fractured ultra-low permeability reservoir[J]. Petroleum Drilling Techniques, 2010, 38(3): 83-86. doi: 10.3969/j.issn.1001-0890.2010.03.019 周林波, 程林松, 曾保全. 裂缝性特低渗透储层渗吸表征模型[J]. 石油钻探技术, 2010, 38(3): 83-86. doi: 10.3969/j.issn.1001-0890.2010.03.019 [63] BOURBIAUX B, FOURNO A, NGUYEN Q L, et al. Experimental and numerical assessment of chemical enhanced oil recovery in oil-wet naturally fractured reservoirs[J]. SPE Journal, 2016, 21(3): 706-719. doi: 10.2118/169140-PA [64] LI Yuxiang, GARY A P, LU Jun, et al. Scaling of low-interfacial-tension imbibition in oil-wet carbonates[J]. SPE Journal, 2017, 22(5): 1349-1361. doi: 10.2118/179684-PA [65] ALSHEHRI A J, KOVSCEK A R. In-situ visualization of multidimensional imbibition in dual-porosity carbonates[J]. SPE Journal, 2016, 21(5): 1631-1642. doi: 10.2118/170811-PA [66] AKIN S, KOVSCEK A R. Imbibition studies of low-permeability porous media[C]. SPE 54590-MS, 1999. doi: 10.2118/54590-MS [67] LI Shuai, DING Yunhong, MENG Di, et al. Volumetric reconstruction experiments and multi-scale simulation of tight oil reservoir with considerations of imbibition and displacement[J]. Oil Drilling | Production Technology, 2016, 38(5): 678-683. doi: 10.13639/j.odpt.2016.05.025 李帅, 丁云宏, 孟迪, 等. 考虑渗吸和驱替的致密油藏体积改造实验及多尺度模拟[J]. 石油钻采工艺, 2016, 38(5): 678-683. doi: 10.13639/j.odpt.2016.05.025 [68] ZHU Weiyao, JU Yan, ZHAO Ming, et al. Spontaneous imbibition mechanism of flow through porous media and waterflooding in low-permeability fractured sandstone reservoir[J]. Acta Petrolei Sinica, 2002, 23(6): 56-59. doi: 10.3321/j.issn:0253-2697.2002.06.012 朱维耀, 鞠岩, 赵明, 等. 低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J]. 石油学报, 2002, 23(6): 56-59. doi: 10.3321/j.issn:0253-2697.2002.06.012 [69] JIANG Yun, SHI Yang, XU Guoqing, et al. Experimental study on spontaneous imbibition under confining pressure in tight sandstone cores based on low-field nuclear magnetic resonance measurements[J]. Energy | Fuels, 2018, 32(3): 3152-3162. doi: 10.1021/acs.energyfuels.7b03776 [70] XU Guoqing, SHI Yang, JIANG Yun, et al. Characteristic and influencing factors for forced imbibition in tight sandstone based on low-field nuclear magnetic resonance measurements[J]. Energy | Fuels, 2018, 32(8): 8230-8240. doi:10.1021/acs.energyfuels.8b01608 |