[1] 许自龙,孟繁举,唐勇,等.叠前反演数据优化处理技术[J].石油物探,2014,53(4):404-411. doi:10.3969/j.issn.1000-1441.2014.04.005 XU Zilong, MENG Fanju, TANG Yong, et al. Seismic data optimization processing techniques for prestack inversion[J]. Geophysical Prospecting for Petroleum, 2014, 53(4):404-411. doi:10.3969/j.issn.1000-1441.2014.04.005 [2] 闵小刚,陈开远,张益明,等.利用AVO正、反演预测深水浊积扇储层[J].石油地球物理勘探,2011,46(6):911-918. MIN Xiaogang, CHEN Kaiyuan, ZHANG Yiming, et al. Reservior prediction in deep-water turbidite fans by using AVO forward modeling and inversion[J]. Oil Geophyical Prospecting, 2011, 46(6):911-918. [3] 黄饶,王志红,刘春成,等.应用泊松阻抗和烃类指示属性预测深水浊积砂岩油藏[J].石油地球物理勘探,2013,48(4):612-617. HUANG Rao, WANG Zhihong, LIU Chuncheng, et al. Prediction of deep-sea turbidity sandstone reservoir with Poisson's impedance and hydrocarbon indication[J]. Oil Geophyical Prospecting, 2013, 48(4):612-617. [4] 解吉高,刘春成,刘志斌,等.下刚果盆地北部中新统深水浊积岩储层及含油性地震预测[J].石油学报,2015,36(1):33-40. doi:10.7623/syxb201501004 XIE Jigao, LIU Chuncheng, LIU Zhibin, et al. Seismic prediction of the reservoir and oil-bearing property of Miocene deep-water turbidite in northern Lower Congo Basin[J]. Acta Petrolei Sinica, 2015, 36(1):33-40. doi:10. 7623/syxb201501004 [5] 解吉高,刘志斌,张益明,等.利用泊松阻抗进行油气检测[J].石油地球物理勘探,2013,48(2):273-278. XIE Jigao, LIU Zhibin, ZHANG Yiming, et al. Hydrocarbon detection by poisson impedance[J]. Oil Geophyical Prospecting, 2013, 48(2):273-278. [6] 张英德,陈全红.叠前弹性波阻抗反演技术在赤道几内亚X区块储层预测中的应用[J].西安科技大学学报,2013,33(2):173-177. doi:10.3969/j.issn.1672-9315.2013.02.009 ZHANG Yingde, CHEN Quanhong. Application of prestack elastic wave impedance inversion technique in reservoir prediction of X Block in Equatorial Guinea[J]. Journal of Xi'an University of Science and Technology, 2013, 33(2):173-177. doi:10.3969/j.issn.1672-9315.2013.02.009 [7] 王惠勇,陈世悦,张云银,等.东营凹陷浊积岩优质储层预测技术[J].石油地球物理勘探,2014,49(4):776-783. WANG Huiyong, CHEN Shiyue, ZHANG Yunyin, et al. Turbidite high-quality reservoir prediction in Dongying Depression[J]. Oil Geophyical Prospecting, 2014, 49(4):776-783. [8] HUANG Xuri, LI Li, LI Falü, et al. Development and application of iterative facies-constrained seismic inversion[J]. Applied Geophysics, 2020, 17(4):522-532. doi:10.1007/s11770-020-0837-3 [9] HINTON G E, OSINDERO S. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. doi:10.1162/neco.2006.18.7.1527 [10] RANZATO M, BOUREAU Y, CHOPRA S, et al. A unified energy-based framework for unsupervised learning[C]. New York:The eleventh international conference on artificial intelligence and statistics, 2007. [11] ARAYA-POLO M, DAHLKE T, FROGNER C, et al. Automated fault detection without seismic processing[J]. The Lead Edge, 2017, 36(3):208-214. doi:10.1190/tle36030208.1 [12] QI J, LÜ B, ALALI A, et al. Image processing of seismic attributes for automatic fault extraction[J]. Society of Exploration Geophysicists, 2019, 84(1):1527-1554. doi:10.1190/geo2018-0369.1 [13] WALDELAND A U, JENSEN A C, GELIUS L J, et al. Convolutional neural networks for automated seismic interpretation[J]. The Leading Edge, 2018, 37(7):482-560. doi:10.1190/tle37070529.1 [14] WANG Benfeng, ZHANG Ning, LU Wenkai, et al. Deep-learning-based seismic data interpolation:A preliminary result[J]. Geophysics, 2018, 84(1):V11-V20. doi:10.1190/geo2017-0495.1 [15] WU Xinming, LIANG Luming, SHI Yunzhi, et al. Fault seg 3D:Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019, 84(3):IM35-IM45. doi:10.1190/GEO2018-0646.1 [16] XIONG Wei, JI Xu, MA Yue, et al. Seismic fault detection with convolutional neural network[J]. Geophysics, 2018, 83(5):97-103. doi:10.1190/GEO2017-0666.1 [17] YANG Fangshu, MA Jianwei. Deep-learning inversion:A next-generation seismic velocity model building method[J]. Geophysics, 2019, 84(4):583-599. doi:10.1190/geo2018-0249.1 [18] WRONA T, PAN I, GAWTHORPE R L, et al. Seismic facies analysis using machine learning[J]. Geophysics, 2018, 83(5):83-95. doi:10.1190/GEO2017-0595.1 [19] CATÉ A, PEROZZI L, GLOAGUEN E, et al. Machine learning as a tool for geologists[J]. The Leading Edge, 2017, 36(3):215-219. doi:10.1190/tle360300215.1 [20] HALL B. Facies classification using machine learning[J]. The Leading Edge, 2016, 35(10):906-909. doi:10.1190/tle35100906.1 [21] HUANG L, DONG X, CLEE T E. A scalable deep learning platform for identifying geologic features from seismic attributes[J]. The Leading Edge, 2017, 36(3):249-256. doi:10.1190/tle360300249.1 [22] XIE Tao, ZHENG Xiaodong, ZHANG Yan. Seismic facies analysis based on speech recognition feature parameters[J]. Geophysics, 2017, 82(3):23-35. doi:10.1190/geo2016-0121.1 [23] ZHAO T, LI F, MARFURT K J. Seismic attribute selection for unsupervised seismic facies analysis using user-guided data-adaptive weights[J]. Geophysics, 2018, 83(2):31-44. doi:10.1190/geo2017-0192.1 [24] SINGH V, YEMEZ I, SOTOMAYOR J. Integrated 3D reservoir interpretation and modeling:Lessons learned and proposed solutions[J]. The Leading Edge, 2013, 32(11):1340-1353. doi:10.1190/tle32111340.1 [25] TIAN X, DAIGLE H. Machine-learning-based object detection in images for reservoir characterization:A case study of fracture detection in shales[J]. The Leading Edge, 2018, 37(6):435-442. doi:10.1190/tle37060435.1 [26] NAEINI E Z, GREEN S, RAUCH-DAVIES M. An integrated deep learning solution for petrophysics, pore pressure and geomechanics property prediction[C]. URTEC-2019-111-MS, 2019. doi:10.15530/urtec-2019-111 [27] ZHENG Y, ZHANG Q, YUSIFOV A, et al. Applications of supervised deep learning for seismic interpretation and inversion[J]. The Leading Edge, 2019, 38(7):526-533. doi:10.1190/tle38070526.1 [28] 刘力辉,陆蓉,杨文魁.基于深度学习的地震岩相反演方法[J].石油物探,2019,58(1):123-129. doi:10.3969/j.issn.1000-1441.2019.01.014 LIU Lihui, LU Rong, YANG Wenkui. Seismic lithofacies inversion based on deep learning[J]. Geophysical Prospecting for Petroleum, 2019, 58(1):123-129. doi:10.3969/j.issn.1000-1441.2019.01.014 [29] KIM Y, NAKATA N. Geophysical inversion versus machine learning in inverse problems[J]. The Leading Edge, 2018, 37(12):894-901. doi:10.1190/tle37120894.1 [30] TORRES A, REVERÓN J. Integration of rock physics, seismic inversion, and support vector machines for reservoir characterization in the Orinoco Oil Belt, Venezuela[J]. The Leading Edge, 2014, 33(7):774-782. doi:10.1190/tle33070774.1 [31] WANG Zongjun. Trained BPNN method and application in tight gas sandstone formation lithology classification[C]. Amsterdam:82nd EAGE Annual Conference&Exhibition, 2021. |