[1] 张帆.油田注水开发产量下降原因分析应用[J].化工管理,2021(21):183-184. doi:10.19900/j.cnki.ISSN1008-4800.2021.21.090 ZHANG Fan. Analysis and application of production decline in oilfield water injection development[J]. Chemical Enterprise Management, 2021(21):183-184. doi:10.19900/j.cnki.ISSN1008-4800.2021.21.090 [2] 张洲,易勇刚,同航,等. CO2驱地面采输系统缓蚀阻垢剂优选研究[J].天然气与石油, 2021, 39(3):88-94. doi:10.3969/j.issn.1006-5539.2021.03.014 ZHANG Zhou, YI Yonggang, TONG Hang, et al. Study on corrosion and scale inhibitor selection for surface production and transportation system of CO2 flooding[J]. Natural Gas and Oil, 2021, 39(3):88-94. doi:10.3969/j.issn.1006-5539.2021.03.014 [3] 赵海燕,易勇刚,于会永,等.碳酰胺复合驱吞吐井缓蚀剂优选评价[J].西南石油大学学报(自然科学版), 2021, 43(4):138-146. doi:10.11885/j.issn.1674-5086.2021.04.29.06 ZHAO Haiyan, YI Yonggang, YU Huiyong, et al. Optimization and evaluation of carbamide composite flooding corrosion inhibitor for stimulation well[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2021, 43(4):138-146. doi:10.11885/j.issn.1674-5086.2021.04.29.06 [4] 张德平,马锋,吴雨乐,等.用于CO2注气驱的油井缓蚀剂加注工艺优化研究[J].西南石油大学学报(自然科学版), 2020, 42(2):103-109. doi:10.11885/j.issn.1674-5086.2019.05.08.01 ZHANG Deping, MA Feng, WU Yule, et al. Optimization of injection technique of corrosion inhibitor in CO2-flooding oil recovery[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2020, 42(2):103-109. doi:10.11885/j.issn.1674-5086.2019.05.08.01 [5] 吴康,武瑞瑞,颜黎栋.油田注水系统腐蚀因素分析和缓蚀剂的研究进展[J].化工技术与开发,2020,49(10):51-56. doi:10.3969/j.issn.1671-9905.2020.10.013 WU Kang, WU Ruirui, YAN Lidong. Corrosion factors analysis of oilfield water injection system and research progress of corrosion inhibitors[J]. Technology&Development of Chemical Industry, 2020, 49(10):51-56. doi:10.3969/j.issn.1671-9905.2020.10.013 [6] 池伸,高强,王欢,等.应用于油田注水系统的缓蚀阻垢剂的合成及其性能[J].腐蚀与防护, 2021, 42(10):109-115. doi:10.11973/fsyfh-202110020 CHI Shen, GAO Qiang, WANG Huan, et al. Synthesis and performance of a corrosion and scale inhibitor for oil field water injection system[J]. Corrosion&Protection, 2021, 42(10):109-115. doi:10.11973/fsyfh-202110020 [7] 宋绍富,吕宇涛.绿色水处理剂聚环氧琥珀酸的研究进展[J].化工技术与开发, 2019, 48(11):54-57. SONG Shaofu, LYU Yutao. Research progress of green water treatment agent polyepoxysuccinic acid[J]. Technology&Development of Chemical Industry, 2019, 48(11):54-57. [8] 李军龙,徐星,邹莉菲.咪唑啉缓蚀剂的合成及缓蚀性能研究[J].天然气与石油, 2016, 34(4):70-74. doi:10.3969/j.issn.1006-5539.2016.04.015 LI Junlong, XU Xing, ZOU Lifei. Research on synthesis of lmidazoline corrosion inhibitor and inhibition performance[J]. Natural Gas and Oil, 2016, 34(4):70-74. doi:10.3969/j.issn.1006-5539.2016.04.015 [9] MADY M F, BAYAT P, KELLAND M A. Environmentally friendly phosphonated polyetheramine scale inhibitors:Excellent calcium compatibility for oil field applications[J]. Industrial&Engineering Chemistry Research, 2020, 59(21):9808-9818. doi:10.1021/acs.iecr.0c01636 [10] ZENG Dezhi, LIU Zhendong, YI Yonggang, et al. Optimizing the performance of a composite corrosion/scale inhibitor for CO2 flooding wells[J]. Journal of Natural Gas Science and Engineering, 2022, 102:104555. doi:10.1016/j.jngse.2022.104555 [11] 贾静娴,柳鑫华,王丽红,等.聚环氧琥珀酸衍生物及复合配方在天然海水中阻垢缓蚀性能的研究[J].表面技术, 2021, 50(12):390-399. doi:10.16490/j.cnki.issn.1001-3660.2021.12.039 JIA Jingxian, LIU Xinhua, WANG Lihong, et al. Study on scale and corrosion inhibition properties of polyepoxysuccinic acid derivatives and composite formulas in natural seawater[J]. Surface Technology, 2021, 50(12):390-399. doi:10.16490/j.cnki.issn.1001-3660.2021.12.039 [12] 王孟依,柳鑫华,周坤,等. PSI-SEA-CSN共聚物的制备及其阻垢性能[J].工业水处理, 2018, 38(6):65-69. WANG Mengyi, LIU Xinhua, ZHOU Kun, et al. Synthesis and scale inhibition capability of copolymer PSI-SEACSN[J]. Industrial Water Treatment, 2018, 38(6):65-69. [13] 张建枚,金栋.改性聚环氧琥珀酸的合成及性能研究[J].工业水处理, 2006, 26(8):36-38. doi:10.3969/j.issn.1005-829X.2006.08.011 ZHANG Jianmei, JIN Dong. Synthesis and performance research of modified polyepoxysulfosuccinic acid[J]. Industrial Water Treatment, 2006, 26(8):36-38. doi:10.3969/j.issn.1005-829X.2006.08.011 [14] 柳鑫华,贾静娴,张红霞,等.乙醇胺改性聚环氧琥珀酸衍生物的合成及其阻垢缓蚀性能[J].表面技术, 2020, 49(8):292-301. doi:10.16490/j.cnki.issn.1001-3660.2020.08.034 LIU Xinhua, JIA Jingxian, ZHANG Hongxia, et al. Synthesis of ethanolamine modified polyepoxysuccinic acid derivatives and their corrosion inhibition properties[J]. Surface Technology, 2020, 49(8):292-301. doi:10.16490/j.cnki.issn.1001-3660.2020.08.034 [15] DELLEY B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics, 2000, 113(18):7756-7764. doi:10.1063/1.1316015 [16] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics, 1990, 92(1):508-517. doi:10.1063/1.458452 [17] SUN H. COMPASS:An ab initio force-field optimized for condensed-pase applications Overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38):7338-7364. [18] 张丽华,郑成松,张严,等.环境友好聚环氧琥珀酸的研究进展[J].工业水处理, 2010, 30(5):5-8. doi:10.3969/j.issn.1005-829X.2010.05.002 ZHANG Lihua, ZHENG Chengsong, ZHANG Yan, et al. Development of environment friendly polymer PESA[J]. Industrial Water Treatment, 2010, 30(5):5-8. doi:10.3969/j.issn.1005-829X.2010.05.002 [19] KIYOOKA S, KANENO D, FUJIYAMA R. Intrinsic reactivity index as a single scale directed toward both electrophilicity and nucleophilicity using frontier molecular orbitals[J]. Tetrahedron, 2013, 69(21):4247-4258. doi:10.1016/j.tet.2013.03.083 [20] SASTRI V S, PERUMAREDDI J R. Molecular orbital theoretical studies of some organic corrosion inhibitors[J]. Corrosion, 1997, 53(8):617-622. doi:10.5006/1.3290294 [21] TANDON H, CHAKRABORTY T, SUHAG V. A new scale of the electrophilicity index invoking the force concept and its application in computing the internuclear bond distance[J]. Journal of Structural Chemistry, 2019, 60(11):1725-1734. doi:10.1134/S0022476619110040 [22] OBOT I B, KAYA S, KAYA C, et al. Density functional theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion[J]. Physica E:Low-dimensional Systems and Nanostructures, 2016, 80:82-90. doi:10.1016/j.physe.2016.01.024 [23] 胡松青,贾晓林,胡建春,等.咪唑啉缓蚀剂分子结构与缓蚀性能的量子化学分析[J].中国石油大学学报(自然科学版), 2011, 35(1):146-150. doi:10.3969/j.issn.1673-5005.2011.01.029 HU Songqing, JIA Xiaolin, HU Jianchun, et al. Quantum chemical analysis on molecular structures and inhibitive properties of imidazoline inhibitors[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(1):146-150. doi:10.3969/j.issn.1673-5005.2011.01.029 [24] OBOT I B, GASEM Z M, UMOREN S A. Molecular level understanding of the mechanism of aloes leaves extract inhibition of low carbon steel corrosion:A DFT approach[J]. International Journal of Electrochemical Science, 2014, 9(2):510-512. doi:10.1007/s11581-013-1029-4 [25] 赵巍,汪家道,刘峰斌,等. H2O分子在Fe (100), Fe (110), Fe (111)表面吸附的第一性原理研究[J].物理学报, 2009, 58(5):3352-3358. doi:10.3321/j.issn:1000-3290.2009.05.074 ZHAO Wei, WANG Jiadao, LIU Fengbin, et al. First principles study of H2O molecule adsorption on Fe (100), Fe (110) and Fe (111) surfaces[J]. Acta Physica Sinica, 2009, 58(5):3352-3358. doi:10.3321/j.issn:1000-3290.2009.05.074 [26] MI Hongfu, XIAO Guoqing, CHEN Xin. Theoretical evaluation of corrosion inhibition performance of threeantipyrine compounds[J]. Computational and Theoretical Chemistry, 2015, 1072:7-14. doi:10.1016/j.comptc.2015.08.023 |