[1] GOLAB A N, KNACKSTEDT M A, AVERDUNK H, et al. 3D porosity and mineralogy characterization in tight gas sandstones[J]. The Leading Edge, 2010, 29(12):1476-1483. doi:10.1190/1.3525363 [2] HOLDITCH S A. Tight gas sands[J]. Journal of Petroleum Technology, 2006, 58(6):86-93. doi:10.2118/103356-JPT [3] XIAO D, JIANG S, THUL D, et al. Impacts of clay on pore structure, storage and percolation of tight sandstones from the Songliao Basin, China:Implications for genetic classification of tight sandstone reservoirs[J]. Fuel, 2018, 211:390-404. doi:10.1016/j.fuel.2017.09.084 [4] 朱金智,雷明,任玲玲,等. 致密砂岩气藏高温高压敏感性评价及机理探讨——以塔里木盆地B区块致密气藏为例[J]. 断块油气田, 2017, 24(2):222-225. doi:10.6056/dkyqt201702018 ZHU Jinzhi, LEI Ming, REN Lingling, et al. Sensitivity evaluation and mechanism of tight sandstone gas reservoir under high temperature and high pressure:A case study of tight gas reservoir in B Zone[J]. Fault-Block Oil & Gas Field, 2017, 24(2):222-225. doi:10.6056/dkyqt201702-018 [5] BAHRAMI H, REZAEE R, CLENNELL B. Water blocking damage in hydraulically fractured tight sand gas reservoirs:An example from Perth Basin, western Australia[J]. Journal of Petroleum Science and Engineering, 2012, 88-89:100-106. doi:10.1016/j.petrol.2012.04.002 [6] REINICKE A, RYBACKI E, STANCHITS S, et al. Hydraulic fracturing stimulation techniques and formation damage mechanisms Implications from laboratory testing of tight sandstone-proppant systems[J]. Geochemistry, 2010, 70:107-117. doi:10.1016/j.chemer.2010.05.016 [7] FARQUHAR R A, SMART B G D, TODD A C, et al. Stress sensitivity of low-permeability sandstones from the Rotliegendes sandstone[C]. SPE 26501-MS, 1993. doi:10.2118/26501-MS [8] HUANG Z, SHIMELD J, WILLIAMSON M, et al. Permeability prediction with artificial neural network modeling in the Venture Gas Field, offshore eastern Canada[J]. Geophysics, 1996, 61(2):422-436. doi:10.1190/-1.1443970 [9] LIU S, HARPALANI S. Permeability prediction of coalbed methane reservoirs during primary depletion[J]. International Journal of Coal Geology, 2013, 113:1-10. [10] 张路锋,周福建,辜富洋,等. 裂缝性致密砂岩气藏入井流体伤害规律[J]. 钻井液与完井液, 2018, 35(5):121-126. doi:10.3969/j.issn.1001-5620.2018.05.023 ZHANG Lufeng, ZHOU Fujian, GU Fuyang, et al. Regularities of fractured tight sandstone gas reservoirs damaged by work fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):121-126. doi:10.3969/j.issn.1001-5620.2018.05.023 [11] 蔡李梅,叶素娟,付菊,等. 多参数约束的致密砂岩储层渗透率预测方法——以川西拗陷中江气田沙溪庙组为例[J]. 成都理工大学学报(自然科学版), 2018, 45(4):468-477. doi:10.3969/j.issn.1671-9727.2018.04.07 CAI Limei, YE Sujuan, FU Ju, et al. Permeability prediction technique based on multi-parameter constrain for tight sandstone reservoir:A case study of the Zhongjiang Gas Field in Jurassic Shaximiao Formation in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2018, 45(4):468-477. doi:10.3969/j.issn.1671-9727.2018.04.07 [12] 程辉,王付勇,宰芸,等. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3):122-132. doi:10.12108/yxyqc.20200312 CHENG Hui, WANG Fuyong, ZAI Yun, et al. Prediction of tight sandstone permeability based on highpressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR)[J]. Lithologic Reservoirs, 2020, 32(3):122-132. doi:10.12108/yxyqc.20200312 [13] 张鹏,吴通,李中,等. BP神经网络法预测顺北超深碳酸盐岩储层应力敏感程度[J]. 石油钻采工艺, 2020, 42(5):622-626. doi:10.13639/j.odpt.2020.05.016 ZHANG Peng, WU Tong, LI Zhong, et al. Application of BP neural network method to predict the stress sensitivity of ultra deep carbonate reservoir in Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(5):622-626. doi:10.13639/j.odpt.2020.05.016 [14] 陈龙伟,汪关妹,冯小英,等. 沁水盆地LB区块煤系地层渗透率预测[J]. 石油地球物理勘探, 2020, 55(S1):85-91, 8. doi:10.13810/j.cnki.issn.1000-7210.2020.S.013 CHEN Longwei, WANG Guanmei, FENG Xiaoying, et al. Permeability prediction of coal strata in Block LB, Qinshui Basin[J]. Oil Geophysical Prospecting, 2020, 55(S1):85-91, 8. doi:10.13810/j.cnki.issn.1000-7210.2020.S.013 [15] 谷宇峰,张道勇,鲍志东,等. 利用梯度提升决策树(GBDT)预测渗透率——以姬塬油田西部长4+5段致密砂岩储层为例[J]. 地球物理学进展, 2021, 36(2):585-594. doi:10.6038/pg2021EE0216 GU Yufeng, ZHANG Daoyong, BAO Zhidong, et al. Permeability prediction using gradient boosting decision tree (GBDT):A case study of tight sandstone reservoirs of member of Chang 4+5 in western Jiyuan Oilfield[J]. Progress in Geophysics, 2021, 36(2):585-594. doi:10.6038/pg2021EE0216 [16] 谷宇峰,张道勇,鲍志东. 测井资料PSO-XGBoost渗透率预测[J]. 石油地球物理勘探, 2021, 56(1):26-37. doi:10.13810/j.cnki.issn.1000-7210.2021.01.003 GU Yufeng, ZHANG Daoyong, BAO Zhidong, et al. Permeability prediction using PSO-XG Boost based on logging data[J]. Oil Geophysical Prospecting, 2021, 56(1):26-37. doi:10.13810/j.cnki.issn.1000-7210.2021.01.003 [17] 闫国峰,姜琪,乔国满,等. 致密油储层压裂后渗透率预测模型[J]. 钻采工艺, 2021, 44(1):69-73. doi:10.3969/J.ISSN.1006-768X.2021.01.15 YAN Guofeng, JIANG Qi, QIAO Guoman, et al. Permeability prediction model of tight oil reservoir after fracturing[J]. Drilling & Production Technology, 2021, 44(1):69-73. doi:10.3969/J.ISSN.1006-768X.2021.01.15 [18] 景文龙,李博涵,杨守磊,等. 基于TensorFlow的均质数字岩心渗透率预测方法及应用[J]. 中国石油大学学报(自然科学版), 2021, 45(4):108-113. doi:10.3969/j.issn.1673-5005.2021.04.013 JING Wenlong, LI Bohan, YANG Shoulei, et al. Method and application of homogeneous digital core permeability prediction based on TensorFlow[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4):108-113. doi:10.3969/j.issn.1673-5005.2021.04.013 [19] 李佳. 基于机器学习的多孔介质渗透率预测研究[D]. 杭州:浙江大学, 2019. LI Jia. Study on permeability prediction of porous media based on machine learning[D]. Hangzhou:Zhejiang University, 2019. [20] 魏佳明. 机器学习在储层参数预测中的应用研究[D]. 西安:西安石油大学, 2019. WEI Jiaming. Application of machine learning in reservoir parameter prediction[D]. Xi'an:Xi'an Petroleum University, 2019. [21] 虞兵,冉晓军,侯秋元,等. 裂缝性致密砂岩储层品质评价[J]. 测井技术, 2019, 43(4):405-409, 415. doi:10.16489/i.issn.1004-1338.2019.04.01 YU Bing, RAN Xiaojun, HOU Qiuyuan, et al. Reservoir quality evaluation of fractured tight sandstone[J]. Well Logging Technology, 2019, 43(4):405-409, 415. doi:10.16489/i.issn.1004-1338.2019.04.01 [22] 唐雁刚,张荣虎,魏红兴,等. 致密砂岩储层多尺度裂缝渗透率定量表征及开发意义[J]. 特种油气藏, 2018, 25(5):30-34. doi:10.3969/j.issn.1006-6535.2018.05.006 TANG Yangang, ZHANG Ronghu, WEI Hongxing, et al. Quantitative permeability characterization of multi-scale fractures and its development significance in tight sandstone gas reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(5):30-34. doi:10.3969/j.issn.1006-6535.2018.05.006 [23] 高文杰,李贤庆,张光武,等. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2):226-235. doi:10.11764/j.issn.1672-1926.2017.12.007 GAO Wenjie, LI Xianqing, ZHANG Guangwu, et al. The relationship research between densification of reservoir and accumulation of the deep tight sandstone gas reservoirs of the Kelasu tectonic zone in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(2):226-235. doi:10.11764/j.issn.1672-1926.2017.12.007 [24] 黄思静,侯中健. 地下孔隙率和渗透率在空间和时间上的变化及影响因素[J]. 沉积学报, 2001, 19(2):224-232. doi:10.14027/j.canki.cjxb.2001.02.010 HUANG Sijing, HOU Zhongjian. Spatio-temporal variation of subsurface porosity and permeability and its influential factors[J]. Acta Sedimentologica Sinica, 2001, 19(2):224-232. doi:10.14027/j.canki.cjxb.2001.02.010 [25] HEILAND J. Permeability of triaxially compressed sandstone:Influence of deformation and strain-rate on permeability[M]//KÜMPEL H J. Thermo-hydro-mechanical coupling in fractured rock. Basel:Birkhaüser Verlag, Basel, 2003:889-908. doi:10.1007/978-3-0348-8083-1_6 [26] ARSON C, PEREIRA J M. Influence of damage on pore size distribution and permeability of rocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8):810-831. doi:10.1002/nag.1123 [27] NGO V T, LU V D, NGUYEN M H, et al. A comparison of permeability prediction methods using core analysis data[C]. SPE 175650-MS, 2015. doi:10.2118/175650-MS [28] LI Tao, LI Min, JING Xueqi, et al. Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media[J]. Petroleum Exploration and Development, 2019, 46(3):594-604. doi:10.1016/S1876-3804(19)60039-X [29] 熊繁升,甘利灯,孙卫涛,等. 裂缝-孔隙介质储层渗透率表征及其影响因素分析[J]. 地球物理学报, 2021, 64(1):279-288. doi:10.6038/cjg2021No175 XIONG Fansheng, GAN Lideng, SUN Weitao, et al. Characterization of reservoir permeability and analysis of influencing factors in fracture-pore media[J]. Chinese Journal of Geophysics, 2021, 64(1):279-288. doi:10.6038/-cjg2021No175 [30] TIAN Ye. Experimental study on stress sensitivity of naturally fractured reservoirs[C]. SPE 173463-STU, 2014. doi:10.2118/173463-STU [31] HAN G, BARTKO K. Stress-sensitivity of fractured tight reservoirs[C]. IPTC 20260-MS, 2020. doi:10.2523/IPTC-20260-MS [32] 康毅力,李潮金,游利军,等. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4):532-541. doi:10.11764/j.issn.1672-1926.2020.01.002 KANG Yili, LI Chaojin, YOU Lijun, et al. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(4):532-541. doi:10.11764/j.issn.1672-1926.2020.01.002 [33] TANG Jun, ZHANG Chengguang, XIN Yi. A fracture evaluation by acoustic logging technology in oil-based mud:A case from tight sandstone reservoirs in Keshen Area of Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3):418-427. doi:10.1016/S1876-3804(17)30048-4 [34] HE Jianming, LIN Chong, LI Xiao, et al. Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores[J]. Fuel, 2017, 208:65-70. doi:10.1016/-j.fuel.2017.06.080 |