西南石油大学学报(自然科学版) ›› 2023, Vol. 45 ›› Issue (4): 155-163.DOI: 10.11885/j.issn.1674-5086.2021.04.30.04

• 石油与天然气工程 • 上一篇    下一篇

基于机器学习的岩芯渗透率及裂缝开度预测

陈林1, 黎棚武2, 张绍俊1, 李志杰2, 杜小勇1   

  1. 1. 中国石油塔里木油田分公司油气工程研究院, 新疆 库尔勒 841000;
    2. 油气藏地质及开发工程全国重点实验室 · 西南石油大学, 四川 成都 610500
  • 收稿日期:2021-04-30 出版日期:2023-08-10 发布日期:2023-07-18
  • 通讯作者: 陈林,E-mail:chenl-tlm@petrochina.com.cn
  • 作者简介:陈林,1969年生,男,汉族,四川崇州人,高级工程师,硕士,主要从事钻井液与完井液等方面的研究工作。E-mail:chenl-tlm@petrochina.com.cn;黎棚武,1997年生,男,汉族,四川德阳人,硕士研究生,主要从事提高油气采收率及数值模拟研究工作。E-mail:1446905204@qq.com;张绍俊,1981年生,男,汉族,四川隆昌人,高级工程师,硕士,主要从事油田化学剂生产、研发方面的工作。E-mail:11174721107@qq.com;李志杰,1996年生,男,汉族,甘肃临洮人,硕士研究生,主要从事油气田开发等方面的研究工作。E-mail:1500154100@qq.com;杜小勇,1969年生,男,汉族,四川射洪人,高级工程师,硕士,主要从事钻井液方面的研究。E-mail:dxy_tlm@petrochina.com.cn

Prediction Method of Core Permeability and Fracture Aperture Based on Machine Learning

CHEN Lin1, LI Pengwu2, ZHANG Shaojun1, LI Zhijie2, DU Xiaoyong1   

  1. 1. Research Institute of Oil and Gas Engineering, Tarim Oilfield Branch, PetroChina, Korla, Xinjiang 841000, China;
    2. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2021-04-30 Online:2023-08-10 Published:2023-07-18

摘要: 应力敏感是致密砂岩气藏损害的主要原因之一,预测应力敏感损害下岩芯渗透率和裂缝开度的变化规律一直是致密砂岩储层保护领域的重点。以塔里木盆地克拉苏构造带岩样为研究对象,基于应力敏感实验及调研数据,采用机器学习多元线性回归算法,耦合了围压渗透率关系模型和K-p函数参数预测模型,建立了岩芯渗透率预测模型和裂缝开度预测模型,并通过决定系数、均方根误差和相对误差检验模型精度。结果表明,围压渗透率关系模型在裂缝性岩芯和非裂缝性岩芯中预测结果决定系数平均值均大于0.960; K-p函数参数预测模型在裂缝性岩芯中的均方根误差高于非裂缝性岩芯,但裂缝性岩芯的相对误差要低于非裂缝性岩芯,综合来看岩芯渗透率预测模型更适用于裂缝性岩芯;裂缝开度预测模型与实测值决定系数0.978,预测精度较高。建立的渗透率预测模型和裂缝开度预测模型可为致密砂岩储层的开采与保护提供指导。

关键词: 机器学习, 渗透率预测, 裂缝开度, 应力敏感, 致密砂岩, 多元线性回归

Abstract: Stress sensitivity is one of the main reasons for the damage of tight sandstone gas reservoirs. The prediction of the change law of core permeability and fracture aperture under stress sensitivity damage is always the key point in the field of tight sandstone reservoir protection. Based on the stress-sensitive experiment and survey data, the core permeability prediction model and fracture opening prediction model were established by using machine learning multiple linear regression algorithm coupled with the confining pressure permeability relationship model and the K-p function parameter prediction model. The accuracy of the model was tested by correlation coefficient, root mean square error and relative error. The results show that the average correlation coefficient of the prediction results of the confining pressure permeability model in fractured and nonfractured cores is greater than 0.96. The prediction results of K-p function parameter prediction model show that the root mean square error in fractured cores is higher than that in non-fractured cores, but the relative error of fractured cores is lower than that of non-fractured cores. It shows that the permeability prediction model is more suitable for fractured cores. The coefficient of determination between the fracture opening prediction model and the measured value is 0.978, indicating a high prediction accuracy. The permeability prediction model and fracture aperture prediction model can provide guidance for the exploitation and protection of tight sandstone reservoir.

Key words: machine learning, permeability prediction, fracture aperture, stress sensitivity, tight sandstone, multiple linear regression

中图分类号: