[1] 焦方正,邹才能,杨智.陆相源内石油聚集地质理论认识及勘探开发实践[J].石油勘探与开发, 2020, 47(6):1067-1078. doi:10.11698/PED.2020.06.01 JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration&development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6):1067-1078. doi:10.11698/PED.2020.06.01 [2] 匡立春,侯连华,杨智,等.陆相页岩油储层评价关键参数及方法[J].石油学报, 2021, 42(1):1-14. doi:10.7623/syxb202101001 KUANG Lichun, HOU Lianhua, YANG Zhi, et al. Key parameters and methods of lacustrine shale oil reservoir characterization[J]. Acta Petrolei Sinica, 2021, 42(1):1-14. doi:10.7623/syxb202101001 [3] 支东明,唐勇,何文军,等.准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J].石油勘探与开发, 2021, 48(1):38-51. doi:10.11698/PED.2021.01.04 ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Development, 2021, 48(1):38-51. doi:10.11698/PED.2021.01.04 [4] 秦志军,陈丽华,李玉文,等.准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景[J].新疆石油地质, 2016, 37(1):1-6. doi:10.7657/XJPG20160101 QIN Zhijun, CHEN Lihua, LI Yuwen, et al. Paleo-sedimentary setting of the Lower Permian Fengcheng Alkali Lake in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(1):1-6. doi:10.7657/XJPG20160101 [5] 朱世发,朱筱敏,陶文芳,等.准噶尔盆地乌夏地区二叠系风城组云质岩类成因研究[J].高校地质学报, 2013, 19(1):38-45. ZHU Shifa, ZHU Xiaomin, TAO Wenfang, et al. Origin of dolomitic reservoir rock in the Permian Fengcheng Formation in Wu-Xia Area of the Junggar Basin[J]. Geological Journal of China Universities, 2013, 19(1):38-45. [6] 陈磊,丁靖,潘伟卿,等.准噶尔盆地玛湖凹陷西斜坡二叠系风城组云质岩优质储层特征及控制因素[J].中国石油勘探,2012,17(3):8-11. doi:10.3969/j.issn.1672-7703.2012.03.002 CHEN Lei, DING Jing, PAN Weiqing, et al. Characteristics and controlling factors of high-quality dolomite reservoir in Permian Fengcheng Formation in west Slope of Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2012, 17(3):8-11. doi:10.3969/j.issn.1672-7703.2012.03.002 [7] 支东明,唐勇,郑孟林,等.准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J].中国石油勘探, 2019, 24(5):615-623. ZHI Dongming, TANG Yong, ZHENG Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in the Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5):615-623. [8] 杜洪凌,许江文,李峋,等.新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考[J].中国石油勘探, 2018, 23(2):15-26. doi:10.3969/j.issn.1672-7703.2018.02.003 DU Hongling, XU Jiangwen, LI Xun, et al. Development and deepening of profitable development of tight glutenite oil reservoirs in Xinjiang Oilfield:Application of geology-engineering integration in Mahu Area and its enlightenment[J]. China Petroleum Exploration, 2018, 23(2):15-26. doi:10.3969/j.issn.1672-7703.2018.02.003 [9] 刘涛,石善志,郑子君,等.地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践[J].中国石油勘探,2018,23(2):90-103. doi:10.3969/j.issn.1672-7703.2018.02.012 LIU Tao, SHI Shanzhi, ZHENG Zijun, et al. Application of geology-engineering integration for developing tight oil in glutenite reservoir by horizontal wells in Mahu Sag[J]. China Petroleum Exploration, 2018, 23(2):90-103. doi:10.3969/j.issn.1672-7703.2018.02.012 [10] 杨海军,张辉,尹国庆,等.基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例[J].中国石油勘探, 2018, 23(2):27-36. doi:10.3969/j.issn.1672-7703.2018.02.004 YANG Haijun, ZHANG Hui, YIN Guoqing, et al. Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs:A case study on west Yueman Block, northern Tarim Basin[J]. China Petroleum Exploration, 2018, 23(2):27-36. doi:10.3969/j.issn.1672-7703.2018.02.004 [11] 吴宝成,李建民,邬元月,等.准噶尔盆地吉木萨尔凹陷芦草沟组页岩油上甜点地质工程一体化开发实践[J].中国石油勘探, 2019, 24(5):679-690. doi:10.3969/j.issn.1672-7703.2019.05.014 WU Baocheng, LI Jianmin, WU Yuanyue, et al. Development practices of geology-engineering integration on upper sweet spots of Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5):679-690. doi:10.3969/j.issn.1672-7703.2019.05.014 [12] 冯张斌,马福建,陈波,等.鄂尔多斯盆地延长组7段致密油地质工程一体化解决方案——针对科学布井和高效钻井[J].中国石油勘探, 2020, 25(2):155-168. doi:10.3969/j.issn.1672-7703.2020.02.015 FENG Zhangbin, MA Fujian, CHEN Bo, et al. Geologyengineering integration solution for tight oil exploration of Chang 7 Member, Ordos Basin:Focusing on scientific well spacing and efficient drilling[J]. China Petroleum Exploration, 2020, 25(2):155-168. doi:10.3969/j.issn.1672-7703.2020.02.015 [13] 刘清友,朱海燕,陈鹏举.地质工程一体化钻井技术研究进展及攻关方向——以四川盆地深层页岩气储层为例[J].天然气工业, 2021, 41(1):178-188. doi:10.3787/j.issn.1000-0976.2021.01.016 LIU Qingyou, ZHU Haiyan, CHEN Pengju. Research progress and direction of geology-engineering integrated drilling technology:A case study on the deep shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1):178-188. doi:10.3787/j.issn.1000-0976.2021.01.016 [14] 尹国庆,张辉,袁芳,等.白云岩储层地质力学特征分析及在储层改造优化应用——以塔中东部为例[J].天然气地球科学, 2015, 26(7):1277-1288. doi:10.11764/j.issn.1672-1926.2015.07.1277 YIN Guoqing, ZHANG Hui, YUAN Fang, et al. Geomechanical characteristics of dolomite reservoir and its application in stimulation optimization:An example of east of Tazhong[J]. Natural Gas Geoscience, 2015, 26(7):1277-1288. doi:10.11764/j.issn.1672-1926.2015.07.1277 [15] JIN Yan, QI Zili, CHEN Mian, et al. Time-sensitivity of the Kaiser effect of acoustic emission in limestone and its application to measurements of in-situ stress[J]. Petroleum Science, 2009, 6(2):176-180. doi:10.1007/s12182-0090028-6 [16] 刘宇坤,何生,何治亮,等.碳酸盐岩超压岩石物理模拟实验及超压预测理论模型[J].石油与天然气地质, 2019, 40(4):716-724. doi:10.11743/ogg20190403 LIU Yukun, HE Sheng, HE Zhiliang, et al. The rock physics modeling experiment under overpressure and theoretical model for overpressure prediction in carbonate rocks[J]. Oil&Gas Geology, 2019, 40(4):716-724. doi:10.11743/ogg20190403 [17] 梁兴,张朝,张鹏伟,等.湖北宜昌深层山地页岩气地质力学研究及应用[J].油气藏评价与开发,2019,9(5):20-31. doi:10.3969/j.issn.2095-1426.2019.05.003 LIANG Xing, ZHANG Chao, ZHANG Pengwei, et al. Research and application of geomechanics of shale gas in deep mountain of Yichang, Hubei[J]. Reservoir Evaluation and Development, 2019, 9(5):20-31. doi:10.3969/j.issn.2095-1426.2019.05.003 [18] 徐珂,田军,杨海军,等.深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例[J].中国矿业大学学报, 2020, 49(4):708-720. XU Ke, TIAN Jun, YANG Haijun, et al. Prediction of current in-situ stress filed and its application of deeply buried tight sandstone reservoir:A case study of Keshen 10 gas reservoir in Kelasu structural belt, Tarim Basin[J]. Journal of China University of Mining&Technology, 2020, 49(4):708-720. [19] 李泽华,邓鹏,杨春和,等.碳酸盐岩储层力学特性及可压性评价研究[J].广西大学学报(自然科学版), 2019, 44(5):1450-1460. doi:10.13624/j.cnki.issn.1001-7445.2019.1450 LI Zehua, DENG Peng, YANG Chunhe, et al. Experimental study on mechanical properties and fracability evaluation of carbonate reservoirs[J]. Journal of Guangxi University (Natural Science Edition), 2019, 44(5):1450-1460. doi:10.13624/j.cnki.issn.1001-7445.2019.1450 [20] 李玉伟,艾池,胡超洋,等.应用模糊综合评判和灰色关联度分析评价水平井多级压裂效果[J].数学的实践与认识, 2014, 44(2):51-56. doi:10.3969/j.issn.1000-0984.2014.02.006 LI Yuwei, AI Chi, HU Chaoyang, et al. Evaluating multistage fracturing effect of horizontal wells using fuzzy comprehensive evaluation and grey relational grade analysis[J]. Mathematics in Practice and Theory, 2014, 44(2):51-56. doi:10.3969/j.issn.1000-0984.2014.02.006 [21] 李国锋,王德安,成勇,等.应用灰色关联分析法优选大牛地气田压裂井层[J].岩性油气藏, 2011, 23(1):114-117. doi:10.3969/j.issn.1673-8926.2011.01.022 LI Guofeng, WANG Dean, CHENG Yong, et al. Using grey correlation analysis method to optimize fractured well in Daniudi Gas Field[J]. Lithologic Reservoirs, 2011, 23(1):114-117. doi:10.3969/j.issn.1673-8926.2011.01.022 [22] 李小刚,郑阳,瞿建华,等.基于灰色关联方法的砂砾岩油藏压后产量影响因素分析[J].油气藏评价与开发, 2016, 6(4):28-33. doi:10.3969/j.issn.2095-1426.2016.04.006 LI Xiaogang, ZHENG Yang, QU Jianhua, et al. Influential factors of postfracture production of glutenite reservoir based on gray correlation method[J]. Reservoir Evaluation and Development, 2016, 6(4):28-33. doi:10.3969/j.issn.2095-1426.2016.04.006 [23] 龙章亮,温真桃,李辉,等.一种基于灰色关联分析的页岩储层可压性评价方法[J].油气藏评价与开发, 2020,10(1):37-42. doi:10.13809/j.cnki.cn32-1825/te.2020.01.006 LONG Zhangliang, WEN Zhentao, LI Hui, et al. An evaluation method of shale reservoir crushability based on grey correlation analysis[J]. Reservoir Evaluation and Development, 2020, 10(1):37-42. doi:10.13809/j.cnki.cn32-1825/te.2020.01.006 [24] 唐颖,邢云,李乐忠,等.页岩储层可压裂性影响因素及评价方法[J].地学前缘, 2012, 19(5):356-363. TANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 2012, 19(5):356-363. [25] 赖富强,罗涵,覃栋优,等.基于层次分析法的页岩气储层可压裂性评价研究[J].特种油气藏, 2018, 25(3):154-159. doi:10.3969/j.issn.1006-6535.2018.03.031 LAI Fuqiang, LUO Han, QIN Dongyou, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process[J]. Special Oil&Gas Reservoirs, 2018, 25(3):154-159. doi:10.3969/j.issn.1006-6535.2018.03.031 [26] 崔春兰,董振国,吴德山.湖南保靖区块龙马溪组岩石力学特征及可压性评价[J].天然气地球科学, 2019, 30(5):626-634. doi:10.11764/j.issn.1672-1926.2018.12.021 CUI Chunlan, DONG Zhenguo, WU Deshan. Rock mechanics study and fracability evaluation for Longmaxi Formation of Baojing Block in Hunan Province[J]. Natural Gas Geoscience, 2019, 30(5):626-634. doi:10.11764/j.issn.1672-1926.2018.12.021 [27] 曾治平,刘震,马骥,等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 2019, 25(2):223-232. doi:10.12090/j.issn.1006-6616.2019.25.02.021 ZENG Zhiping, LIU Zhen, MA Ji, et al. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 2019, 25(2):223-232. doi:10.12090/j.issn.1006-6616.2019.25.02.021 [28] CHANG C, ZOBACK M D, KHAKSAR A. Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 2006, 51(3):223-237. doi:10.1016/j.petrol.2006.01.003 [29] 王珂,戴俊生,冯建伟,等.塔里木盆地克深前陆冲断带储层岩石力学参数研究[J].中国石油大学学报(自然科学版),2014,38(5):25-33. doi:10.3969/j.issn.1673-5005.2014.05.004 WANG Ke, DAI Junsheng, FENG Jianwei, et al. Research on reservoir rock mechanical parameters of Keshen foreland thrust belt in Tarim Basin[J]. Journal of China University of Petroleum, 2014, 38(5):25-33. doi:10.3969/j.issn.1673-5005.2014.05.004 [30] 钟自强,刘向君,刘诗琼,等.砾岩地层岩石力学参数测井预测模型构建与应用[J].科学技术与工程, 2018, 18(8):181-186. doi:10.3969/j.issn.1671-1815.2018.08.030 ZHONG Ziqiang, LIU Xiangjun, LIU Shiqiong, et al. Logging prediction model of rock mechanical parameters and its applications in conglomerate formation[J]. Science Technology and Engineering, 2018, 18(8):181-186. doi:10.3969/j.issn.1671-1815.2018.08.030 [31] 郭思强.大庆油田T30井区扶余油层致密储层岩石力学参数建模[J].大庆石油地质与开发, 2020, 39(5):169-174. doi:10.19597/J.ISSN.1000-3754.202005019 GUO Siqiang. Rock mechanical parameter modeling of Fuyu tight oil reservoir in well Block T30 of Daqing Oilfield[J]. Petroleum Geology&Oilfield Development in Daqing, 2020, 39(5):169-174. doi:10.19597/J.ISSN.1000-3754.202005019 [32] LIANG Lixi, LIU Xiangjun, XIONG Jian, et al. New model to evaluate the Brittleness in shale formation[C]. Qingdao:International Geophysical Conference, 2017. doi:10.1190/IGC2017-317 [33] COUZENS-SCHULTZ B A, AXON A, AZBEL K, et al. Pore pressure prediction in unconventional resources[C]. Beijing:International Petroleum Technology Conference, 2013. doi:10.2523/IPTC-16849-MS [34] 马建海,孙建孟.用测井资料计算地层应力[J].测井技术, 2002, 26(4):347-352. doi:10.3969/j.issn.1004-1338.2002.04.022 MA Jianhai, SUN Jianmeng. Calculation of formation stress using logging data[J]. Well Logging Technology, 2002, 26(4):347-352. doi:10.3969/j.issn.1004-1338.2002.04.022 [35] 程玉琪,王树立,周志军,等.海拉尔油田不同区块地应力分布规律[J].新疆石油地质, 2009, 30(1):81-84. CHENG Yuqi, WANG Shuli, ZHOU Zhijun, et al. Distribution rules of ground stress in different blocks in Hailaer Oilfield[J]. Xinjiang Petroleum Geology, 2009, 30(1):81-84. [36] 张章远,吴满路,陈群策,等.地应力测量方法综述[J].河南理工大学学报(自然科学版), 2012, 31(3):305-310. doi:10.3969/j.issn.1673-9787.2012.03.011 ZHANG Zhangyuan, WU Manlu, CHEN Qunce, et al. Review of in-situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 2012, 31(3):305-310. doi:10.3969/j.issn.1673-9787.2012.03.011 |