[1] 胡勇,彭先,李骞,等.四川盆地深层海相碳酸盐岩气藏开发技术进展与发展方向[J].天然气工业, 2019,39(9):54-63. doi:10.3787/j.issn.1000-0976.2019.09.006 HU Yong, PENG Xian, LI Qian, et al. Progress and development direction of technologies for deep marine carbonate gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(9):54-63. doi:10.3787/j.issn.1000-0976.2019.09.006 [2] 马永生.四川盆地普光超大型气田的形成机制[J].石油学报, 2007, 28(2):9-14. doi:10.3321/j.issn:0253-2697.2007.02.002 MA Yongsheng. Generation mechanism of Puguang Gas Field in Sichuan Basin[J]. Acta Petrolei Sinica, 2007, 28(2):9-14. doi:10.3321/j.issn:0253-2697.2007.02.002 [3] 张烈辉,李成勇,赵玉龙,等.裂缝性碳酸盐岩油气藏渗流机理研究进展[J].地球科学, 2017, 42(8):1273-1282. ZHANG Liehui, LI Chengyong, ZHAO Yulong, et al. Review on the seepage mechanisms of oil and gas flow in fractured carbonate reservoirs[J]. Earth Science, 2017, 42(8):1273-1282. [4] 康博,张烈辉,王健,等.裂缝孔洞型碳酸盐岩凝析气井出水特征及预测[J].西南石油大学学报(自然科学版), 2017, 39(1):107-113. doi:10.11885/j.issn.1674-5086.2015.07.24.01 KANG Bo, ZHANG Liehui, WANG Jian, et al. Features and forecast of water output in fractured vuggy carbonate condensate reservoir[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2017, 39(1):107-113. doi:10.11885/j.issn.1674-5086.2015.07.24.01 [5] 冯曦,彭先,李隆新,等.碳酸盐岩气藏储层非均质性对水侵差异化的影响[J].天然气工业, 2018, 38(6):67-75. doi:10.3787/j.issn.1000-0976.2018.06.009 FENG Xi, PENG Xian, LI Longxin, et al. Influence of reservoir heterogeneity on water invasion differentiation in carbonate gas reservoirs[J]. Natural Gas Industry, 2018, 38(6):67-75. doi:10.3787/j.issn.1000-0976.2018.06.009 [6] 李勇,于清艳,李保柱,等.缝洞型有水油藏动态储量及水体大小定量评价方法[J].中国科学(技术科学), 2017, 47(7):708-717. doi:10.1360/N092016-00286 LI Yong, YU Qingyan, LI Baozhu, et al. Quantitative evaluation method of OOIP and aquifer size for fracturedcaved carbonate reservoirs with active aquifer support[J]. Scientia Sinica Technologica, 2017, 47(7):708-717. doi:10.1360/N092016-00286 [7] 黄兴,李天太,杨沾宏,等.孔洞型碳酸盐岩油藏不同开发方式物理模拟研究[J].断块油气田, 2016, 23(1):81-85. doi:10.6056/dkyqt201601018 HUANG Xing, LI Tiantai, YANG Zhanhong, et al. Physical simulation for different development of vuggy carbonate reservoir[J]. Fault-Block Oil and Gas Field, 2016, 23(1):81-85. doi:10.6056/dkyqt201601018 [8] 郭程飞,李华斌,陶冶,等.碳酸盐岩气藏水侵模拟与剩余气分布的核磁共振实验研究[J].中南大学学报(英文版), 2020, 27(2):531-541. GUO Chengfei, LI Huabin, TAO Ye, et al. Water invasion and remaining gas distribution in carbonate gas reservoirs using core displacement and NMR[J]. Journal of Central South University, 2020, 27(2):531-541. [9] 张筠,吴见萌,朱国璋.致密气核磁共振测井观测模式及气水弛豫分析——以四川盆地为例[J].天然气工业, 2018, 38(1):49-55. doi:10.3787/j.issn.1000-0976.2018.01.006 ZHANG Yun, WU Jianmeng, ZHU Guozhang. NMR logging activation sets selection and fluid relaxation characteristics analysis of tight gas reservoirs:A case study from the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(1):49-55. doi:10.3787/j.issn.1000-0976.2018.01.006 [10] 王璐,杨胜来,彭先,等.缝洞型碳酸盐岩气藏多类型储层内水的赋存特征可视化实验[J].石油学报, 2018, 39(6):686-696. doi:10.7623/syxb201806007 WANG Lu, YANG Shenglai, PENG Xian, et al. Visual experiments on the occurrence characteristics of multitype reservoir water in fracture-cavity carbonate gas reservoir[J]. Acta Petrolei Sinica, 2018, 39(6):686-696. doi:10.7623/syxb201806007 [11] 王璐,杨胜来,刘义成,等.缝洞型碳酸盐岩储层气水两相微观渗流机理可视化实验研究[J].石油科学通报,2017,2(3):364-376. doi:10.3969/j.issn.2096-1693.2017.03.034 WANG Lu, YANG Shenglai, LIU Yicheng, et al. Visual experimental investigation of gas-water two phase micro seepage mechanisms in fracture-cavity carbonate reservoirs[J]. Petroleum Science Bulletin, 2017, 2(3):364-376. doi:10.3969/j.issn.2096-1693.2017.03.034 [12] WANG Lu, YANG Shenglai, PENG Xian, et al. An improved visual investigation on gas-water flow characteristics and trapped gas formation mechanism of fracture-cavity carbonate gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2018, 49:213-226. doi:10.1016/j.jngse.2017.11.010 [13] 张磊,康钦军,姚军,等.页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J].科学通报, 2014, 59(32):3197-3203. doi:10.1360/N972014-00461 ZHANG Lei, KANG Qinjun, YAO Jun, et al. The explanation of low recovery of fracturing fluid in shale hydraulic fracturing by pore-scale simulation[J]. Chinese Science Bulletin, 2014, 59(32):3197-3203. doi:10.1360/N972014-00461 [14] 赵玉龙,刘香禺,张烈辉,等.致密砂岩气藏气水流动规律及储层干化作用机理[J].天然气工业, 2020, 40(9):70-79. doi:10.3787/j.issn.1000-0976.2020.09.009 ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al. Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs[J]. Natural Gas Industry, 2020, 40(9):70-79. doi:10.3787/j.issn.1000-0976.2020.09.009 [15] 赵玉龙,刘香禺,张烈辉,等.基于格子Boltzmann方法的非常规天然气微尺度流动基础模型[J].石油勘探与开发, 2020, 48(1):1-10. doi:10.11698/PED.2021.01.14 ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al. A basic model of unconventional gas microscale flow based on the lattice Boltzmann method[J]. Petroleum Exploration and Development, 2020, 48(1):1-10. doi:10.11698/PED.2021.01.14 [16] ZHAO Jianlin, KANG Qinjun, YAO Jun, et al. The effect of wettability heterogeneity on relative permeability of two-phase flow in porous media:A lattice Boltzmann study[J]. Water Resources Research, 2018, 54:1295-1311. doi:10.1002/2017WR021443 [17] ZHANG T, JAVADPOUR F, YIN Y, et al. Upscaling water flow in composite nanoporous shale matrix using lattice Boltzmann method[J]. Water Resources Research, 2020, 56:e2019WR026007. doi:10.1029/2019WR026007 [18] ROTHMAN D H, KELLER J M. Immiscible cellularautomaton fluids[J]. Journal of Statistical Physics, 1988, 52(3-4):1119-1127. [19] HUANG Haibo, HUANG Junjie, LU Xiyun. Study of immiscible displacements in porous media using a colorgradient-based multiphase lattice Boltzmann method[J]. Computers&Fluids, 2014, 93(8):164-172. doi:10.1016/j.compfluid.2014.01.025 [20] REIS T, PHILLIPS T N. Lattice Boltzmann model for simulating immiscible two-phase flows[J]. Journal of Physics A:Mathematical and Theoretical, 2007, 40(14):4033-4053. doi:10.1088/1751-8113/40/14/018 [21] LATVA-KOKKO M, ROTHMAN D H. Static contact angle in lattice Boltzmann models of immiscible fluids[J]. Physical Review E, 2005, 72(4):046701. doi:10.1103/PhysRevE.72.046701 [22] ZHAO Wen, JIA Chengzao, JIANG Lin, et al. Fluid charging and hydrocarbon accumulation in the sweet spot, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 200:108391. doi:10.1016/j.petrol.2021.108391 [23] ZHANG Tao, JAVADPOUR F, LI Jing, et al. Pore-scale perspective of gas/water two-phase flow in shale[J]. SPE Journal, 2021, 26(2):828-846. doi:10.2118/205019-PA [24] 张涛,李相方,王香增,等.致密砂岩气水相对渗透率模型[J].中国科学(技术科学),2018,48(10):1132-1140. ZHANG Tao, LI Xiangfang, WANG Xiangzeng, et al. Gas-water relative permeability model for tight sandstone gas reservoirs[J]. Scientia Sinica Technologica, 2018, 48(10):1132-1140. |