[1] 仲志丹,樊浩杰,李鹏辉. CNN-SVM模型在抽油机井故障诊断中的应用[J]. 河南理工大学学报(自然科学版), 2018, 37(4):112-117. doi:10.16186/j.cnki.1673-9787.2018.04.17 ZHONG Zhidan, FAN Haojie, LI Penghui. Application of CNN-SVM model in fault diagnosis of pumping well[J]. Journal of Henan Polytechnic University (Natural Science), 2018, 37(4): 112-117. doi: 10.16186/j.cnki.1673-9787.2018.04.17 [2] LUAN Guohua, HE Shunli, YANG Zhi, et al. A prediction model for a new deep-rod pumping system[J]. Journal of Petroleum Science and Engineering, 2011, 80(1): 75-80. doi: 10.1016/j.petrol.2011.10.011 [3] XU Peng, XU Shijin, YIN Hongwei. Application of selforganizing competitive neural network in fault diagnosis of suck rod pumping system[J]. Journal of Petroleum Science and Engineering, 2007, 58(1-2): 43-48. doi: 10.101-6/j.petrol.2006.11.008 [4] LI Kun, GAO Xianwen, YANG Weibing, et al. Multiple fault diagnosis of down-hole conditions of suckerrod pumping wells based on freeman chain code and DCA[J]. Petroleum Science, 2013, 10(3): 347-360. doi: 10.1007/s12182-013-0283-4 [5] LI Kun, GAO Xianwen, TIAN Zhongda, et al. Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit[J]. Petroleum Science, 2013, 10(1): 73-80. doi: 10.1007/s1218-2-013-0252-y [6] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251. doi:10.11897/SP.J.1016.2017.01229 ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016.2017.01229 [7] 李钰. 基于深度学习的示功图分析研究与应用[D]. 青岛:中国石油大学(华东), 2018. doi:10.27644/d.cnki.gsydu.2018.001221 LI Yu. Application of deep learning in the dynamometer card recognition[D]. Qingdao: China University of Petroleum (East China), 2018. doi: 10.27644/d.cnki.gsydu.2018.001221 [8] 樊浩杰. 基于人工智能算法的示功图智能识别研究[D]. 洛阳:河南科技大学, 2019. FAN Haojie. Research on intelligent recognition of indicator diagram based on artificial intelligence algorithm[D]. Luoyang: Henan University of Science and Technology, 2019. [9] 杜娟,刘志刚,宋考平,等. 基于卷积神经网络的抽油机故障诊断[J]. 电子科技大学学报, 2020, 49(5):751-757. doi:10.12178/1001-0548.2019205 DU Juan, LIU Zhigang, SONG Kaoping, et al. Fault diagnosis of pumping unit based on convolutional neural network[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(5): 751-757. doi: 10.12178/1001-0548.2019205 [10] ABDALLA R, ELA M A E, EL-BANBI A. Identification of downhole conditions in sucker rod pumped wells using deep neural networks and genetic algorithms[J]. SPE Production & Operations, 2020, 35(2): 435-447. doi: 10.2118/200494-PA [11] HE Yanfeng, LIU Yali, SHAO Shuai, et al. Application of CNN-LSTM in gradual changing fault diagnosis of rod pumping system[J]. Mathematical Problems in Engineering, 2019: 1-9. doi: 10.1155/2019/4203821 [12] FUKUSHIMA K, MIYAKE S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position[J]. Pattern Recognition, 1982, 15(6): 455-469. doi: 10.1016/0031-3203(82)90024-3 [13] 赵志宏,杨绍普,马增强. 基于卷积神经网络LeNet-5的车牌字符识别研究[J]. 系统仿真学报, 2010, 22(3):638-641. doi:10.16182/j.cnki.joss.2010.03.040 ZHAO Zhihong, YANG Shaopu, MA Zengqiang. License plate character recognition based on convolutional neural network LeNet-5[J]. Journal of System Simulation, 2010, 22(3): 638-641. doi: 10.16182/j.cnki.joss.2010.03.040 [14] 费建超,芮挺,周遊,等. 基于梯度的多输入卷积神经网络[J]. 光电工程,2015,42(3):33-38. doi:10.3969/j.issn.1003-501X.2015.03.006 FEI Jianchao, RUI Ting, ZHOU You, et al. Multi-input convolutional neural network based on gradient[J]. OptoElectronic Engineering, 2015, 42(3): 33-38. doi: 10.3969/j.issn.1003-501X.2015.03.006 [15] 王兵,郑亚梅,陈茂柯,等. 基于Tri-BiLSTM CNN的钻井安全问答系统[J]. 西南石油大学学报(自然科学版), 2020, 42(6):157-164. doi:10.11885/j.issn.1674-5086.2020.05.12.06 WANG Bing, ZHENG Yamei, CHEN Maoke, et al. Question answering system for drilling safety based on TriBiLSTM-CNN[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6): 157-164. doi: 10.11885/j.issn.1674-5086.2020.05.12.06 [16] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradientbased learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/9780470544976.ch9 [17] 文必龙,汪志群,金宗泽,等. 示功图与模糊神经网络结合的抽油机故障诊断[J]. 计算机系统应用, 2016, 25(1):121-125. WEN Bilong, WANG Zhiqun, JIN Zongze, et al. Diagnosis of pumping unit with combing indicator diagram with fuzzy neural networks[J]. Computer Systems & Applications, 2016, 25(1): 121-125. [18] 张超凡. 示功图特征提取方法及其应用研究[D]. 秦皇岛:燕山大学, 2019. doi:10.27440/d.cnki.gysdu.2019.000623 ZHANG Chaofan. Research on feature extraction method of dynamometer and its application[D]. Qinhuangdao: Yanshan University, 2019. doi: 10.27440/d.cnki.gysdu.2019.000623 [19] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386 [20] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(6): 1929-1958. [21] 颜瑾,张乃禄,刘雨,等. 基于智能RTU的气田井场监控系统[J]. 西安石油大学学报(自然科学版), 2017, 32(4):61-66. doi:10.3969/j.issn.1673-064X.2017.04.010 YAN Jin, ZHANG Nailu, LIU Yu, et al. Gasfield well-site monitoring system based on intelligent RTU[J]. Journal of Xi'an Shiyou University (Natural Science), 2017, 32(4): 61-66. doi: 10.3969/j.issn.1673-064X.2017.04.010 [22] 张宁. 基于智能型的BP神经网络的示功图故障诊断研究[D]. 兰州:兰州理工大学, 2017. ZHANG Ning. Research on fault diagnosis of indicator diagram based on intelligent BP neural network[D]. Lanzhou: Lanzhou University of Technology, 2017. [23] 李颖川. 采油工程[M]. 北京:石油工业出版社, 2009. LI Yingchuan. Oil production engineering[M]. Beijing: Petroleum Industry Press, 2009. |