[1] 王健,余恒,薛强,等. 尕斯E31油藏高温高矿化度调剖剂的研制与性能评价[J]. 石油与天然气化工, 2018, 47(4):68-72. doi:10.3969/j.issn.1007-3426.2018.04.013 WANG Jian, YU Heng, XUE Qiang, et al. Development and performance study of high temperature and high salinity profile control agent in Gasikule E31 reservoir[J]. Chemical Engineering of Oil and Gas, 2018, 47(4): 68-72. doi: 10.3969/j.issn.1007-3426.2018.04.013 [2] 王敏,王斌,董俊艳. 高温高盐油藏多段塞驱油技术的研究与应用[J]. 精细石油化工进展, 2019, 20(4):1-5. doi:10.3969/j.issn.1009-8348.2019.04.002 WANG Min, WANG Bin, DONG Junyan. Research on multi-slug oil flooding technology and its application in high temperature and high salinity reservoir[J]. Advances in Fine Petrochemicals, 2019, 20(4): 1-5. doi: 10.3969/j.issn.1009-8348.2019.04.002 [3] 吴文明,秦飞,李亮,等. 塔河油田碎屑岩油藏活性混合油堵水体系探索实验[J]. 钻采工艺, 2013, 36(3):89-92. doi:10.3969/J.ISSN.1006-768X.2013.03.27 WU Wenming, QIN Fei, LI Liang, et al. Experiment on performance evaluation of active mixed oil plugging system in clastic reservoir in Tahe Oilfield[J]. Drilling & Production Technology, 2013, 36(3): 89-92. doi: 10.3969/J.ISSN.1006-768X.2013.03.27 [4] 曹嫣镔. 高温高盐泡沫提高采收率技术研究[D]. 济南:山东大学, 2007. doi:10.7666/d.Y1272144 CAO Yanbin. The research of foaming enhancing the OOIP of high temperature and salinity reservoir[D]. Ji'nan: Shandong University, 2007. doi: 10.7666/d.Y1272144 [5] 李春秀. 苛刻条件下的水基泡沫稳定性研究[D]. 济南:山东大学, 2013. doi:10.7666/d.Y2331948 LI Chunxiu. Study about stability of water-based foam under harsh conditions[D]. Ji'nan: Shandong University, 2013. doi: 10.7666/d.Y2331948 [6] 杨长春. 高温高盐油藏水平井深部吞吐-堵水方法研究[D]. 北京:中国石油大学(北京), 2017. YANG Changchun. Method research of combining indepth huff and puff with plugging in horizontal wells of high-temperature and high-salinity reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2017. [7] SUN Lin, WEI Peng, PU Wanfen, et al. The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments[J]. Journal of Petroleum Science and Engineering, 2016, 147: 485-494. doi: 10.1016/j.petrol.2016.09.023 [8] SUN Lin, WEI Peng, PU Wanfen, et al. Experimental validation of the temperature-resistant and salt-tolerant xanthan enhanced foam for enhancing oil recovery[J]. Journal of Dispersion Science and Technology, 2015, 36(12): 1693-1703. doi: 10.1080/01932691.2014.1003563 [9] BRICEÑO-AHUMADA Z, LANGEVIN D. On the influence of surfactant on the coarsening of aqueous foams[J]. Advances in Colloid and Interface Science, 2017, 244: 124-131. doi: 10.1016/j.cis.2015.11.005 [10] SAINT-JALMES A. Physical chemistry in foam drainage and coarsening[J]. Soft Matter, 2006, 2(10): 836-849. doi: 10.1039/B606780H [11] SAINT-JALMES A, LANGEVIN D. Time evolution of aqueous foams: Drainage and coarsening[J]. Journal of Physics: Condensed Matter, 2002, 14(40): 9397-9412. doi: 10.1088/0953-8984/14/40/325 [12] LANGEVIN D. On the rupture of thin films made from aqueous surfactant solutions[J]. Advances in Colloid and Interface Science, 2020, 275: 102075. doi: 10.1016/j.cis.2019.102075 [13] JIAN Guoqing, HOU Qingfeng, CHEN Shuyan, et al. Comparative study of extensional viscoelasticity properties of liquid films and stability of bulk foams[J]. Journal of Dispersion Science and Technology, 2013, 34(10): 1382-1391. doi: 10.1080/01932691.2012.749182 [14] TCHOLAKOVA S, MITRINOVA Z, GOLEMANOV K, et al. Control of ostwald ripening by using surfactants with high surface modulus[J]. Langmuir, 2011, 27(24): 14807-14819. doi: 10.1021/la203952p [15] TCHOLAKOVA S, MUSTAN F, PAGUREVA N, et al. Role of surface properties for the kinetics of bubble Ostwald ripening in saponin-stabilized foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 534: 16-25. doi: 10.1016/j.colsurfa.2017.04.055 [16] PAGUREVA N, TCHOLAKOVA S, GOLEMANOV K, et al. Surface properties of adsorption layers formed from triterpenoid and steroid saponins[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 491: 18-28. doi: 10.1016/j.colsurfa.2015.12.001 [17] WANG Jianlong, NGUYEN A V, FARROKHPAY S. Effects of surface rheology and surface potential on foam stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488: 70-81. doi: 10.1016/j.colsurfa.2015.10.016 [18] GUPTA M, HOOGHTEN R V, FISCHER P, et al. Limiting coalescence by interfacial rheology: Over-compressed polyglycerol ester layers[J]. Rheologica Acta, 2016, 55(7): 537-546. doi: 10.1007/s00397-016-0934-7 [19] 崔晓红,张磊,赵荣华,等. 界面张力弛豫法研究芳香侧链酰基牛磺酸钠的界面相互作用[J]. 高等学校化学学报, 2011, 32(7):1556-1562. CUI Xiaohong, ZHANG Lei, ZHAO Ronghua, et al. Interfacial interactions among aromatic side chained N-acyltaurates studied by interfacial tension relaxation measurements[J]. Chemical Journal of Chinese Universities, 2011, 32(7): 1556-1562. [20] 蒲万芬,沈超,唐兴建,等. 化学驱体系油水界面扩张黏弹性研究进展[J]. 油田化学, 2018, 35(3):562-570. doi:10.19346/j.cnki.1000-4092.2018.03.033 PU Wanfen, SHEN Chao, TANG Xingjian, et al. Research advances about oil-water interfacial dilational viscoelasticity in chemical flooding[J]. Oilfield Chemistry, 2018, 35(3): 562-570. doi: 10.19346/j.cnki.1000-4092.2018.03.033 [21] 孙涛垒,张路,王宜阳,等. 界面张力弛豫法研究不同分子量原油活性组分界面扩张粘弹性[J]. 高等学校化学学报, 2003, 24(12):2243-2247. doi:10.3321/j.issn:0251-0790.2003.12.020 SUN Taolei, ZHANG Lu, WANG Yiyang, et al. Studies on interfacial dilational visoelasticity of active constituents in crude oil with different molecular weights by interfacial tension relaxation methods[J]. Chemical Journal of Chinese Universities, 2003, 24(12): 2243-2247. doi: 10.3321/j.issn:0251-0790.2003.12.020 [22] 祝仰文,宋新旺,罗澜,等. 驱油体系化学剂间相互作用对界面吸附膜的影响[J]. 高等学校化学学报, 2010, 31(12):2445-2452. ZHU Yangwen, SONG Xinwang, LUO Lan, et al. Effect of interactions among flooding chemicals on interfacial properties of adsorption film[J]. Chemical Journal of Chinese Universities, 2010, 31(12): 2445-2452. [23] 马涛,王友启,谭中良,等. 十四烷基羟丙基磷酸酯甜菜碱的泡沫特性[J]. 应用化工, 2016, 45(7):1255-1257. doi:10.16581/j.cnki.issn1671-3206.20160427.007 MA Tao, WANG Youqi, TAN Zhongliang, et al. The foam properties of tetradecyl hydroxypropyl phosphate betaine[J]. Applied Chemical Industry, 2016, 45(7): 1255-1257. doi: 10.16581/j.cnki.issn1671-3206.20160427.007 [24] LI Weitao, WEI Falin, XIONG Chunming, et al. Effect of salinities on supercritical CO2 foam stabilized by a betaine surfactant for improving oil recovery[J]. Energy & Fuels, 2019, 33(9): 8312-8322. doi: 10.1021/acs.energyfuels.9b01688 [25] ZHANG Yongmin, AN Pengyun, LIU Xuefeng. A “worm” -containing viscoelastic fluid based on single amine oxide surfactant with an unsaturated C22-tail[J]. RSC Advances, 2015, 5(25): 19135-19144. doi: 10.1039/c4RA16772D |