[1] 王宴滨,高德利,王金铎,等. 横流向涡激-参激耦合振动下深水钻井隔水管疲劳损伤预测[J]. 中国石油大学学报(自然科学版), 2022, 46(6):119-126. doi:10.3969/j.issn.1673-5005.2022.06.013 WANG Yanbin, GAO Deli, WANG Jinduo, et al. Fatigue damage prediction of deepwater drilling riser under crossflow vortex-parametric-coupled vibration[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6):119126. doi:10.3969/j.issn.1673-5005.2022.06.013 [2] 甘武祥,赵宏林,段梦兰. 深水钻井隔水管力学性能分析[J]. 石油机械, 2018, 46(3):48-52. doi:10.16082/j.cnki.issn.1001-4578.2018.03.009 GAN Wuxiang, ZHAO Honglin, DUAN Menglan. Analysis of mechanical behavior of deepwater drilling riser[J]. China Petroleum Machinery, 2018, 46(3):48-52. doi:10.16082/j.cnki.issn.1001-4578.2018.03.009 [3] JENSEN G A, SAFSTROM N, NGUYEN T D, et al. A nonlinear PDE formulation for offshore pipeline installation[J]. Ocean Engineering, 2010, 37(4):365-377. doi:10.1016/j.oceaneng.2009.12.009 [4] 李中,杨进,曹式敬,等. 深海水域钻井隔水管力学特性分析[J]. 石油钻采工艺, 2007, 29(1):19-21. doi:10.13639/j.odpt.2007.01.006 LI Zhong, YANG Jin, CAO Shijing, et al. Analysis of mechanics characteristics of deepsea drilling risers[J]. Oil Drilling & Production Technology, 2007, 29(1):19-21. doi:10.13639/j.odpt.2007.01.006 [5] 吴鹏,张彦秋,庞世强,等. 深水顶张力隔水管钻井作业时的非线性振动特性分析[J]. 动力学与控制学报, 2019, 17(2):112-120. doi:10.6052/1672-6553-2018-060 WU Peng, ZHANG Yanqiu, PANG Shiqiang, et al. Nonlinear vibration analysis of deepwater top tension riser under drilling condition[J]. Journal of Dynamics and Control, 2019, 17(2):112-120. doi:10.6052/1672-6553-2018-060 [6] CHEN Yanfei, CHAI Y H, LI Xin, et al. An extraction of the natural frequencies and mode shapes of marine risers by the method of differential transformation[J]. Computers and Structures, 2009, 87(21-22):1384-1393. doi:10.1016/j.compstruc.2009.07.003 [7] 唐友刚,青兆熹,张杰,等. 深海立管涡激振动预报模型及影响因素[J]. 哈尔滨工程大学学报, 2017, 38(3):338-343. doi:10.11990/jheu.201603096 TANG Yougang, QING Zhaoxi, ZHANG Jie, et al. Prediction model and influence factors on vortex-induced vibration of deepwater risers[J]. Journal of Harbin Engineering University, 2017, 38(3):338-343. doi:10.11990/jheu.201603096 [8] 骆正山,蔡梦倩. 深海立管VIV预测模型及影响因素研究[J]. 中国安全科学学报, 2019, 29(7):6-11. doi:10.16265/j.cnki.issn1003-3033.2019.07.002 LUO Zhengshan, CAI Mengqian. Research on VIV prediction model and influence factors of deep-water risers[J]. China Safety Science Journal, 2019, 29(7):6-11. doi:10.16265/j.cnki.issn1003-3033.2019.07.002 [9] 康庄,马传震,张橙. 动态边界条件下柔性立管涡激振动试验研究[J]. 华中科技大学学报(自然科学版), 2020, 48(11):79-84. doi:10.13245/j.hust.201113 KANG Zhuang, MA Chuanzhen, ZHANG Cheng. Experimental study on vortex-induced vibration of flexible riser under dynamic boundary conditions[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(11):79-84. doi:10.13245/j.hust.201113 [10] 高光海,崔运静,仇性启,等. 深海顶张力立管涡激振动响应及参数影响[J]. 船舶工程, 2019, 41(2):101-107. doi:10.13788/j.cnki.cbgc.2019.02.020 GAO Guanghai, CUI Yunjing, QIU Xingqi, et al. Parameter influencing analysis of vortex-induced vibration response of deep sea top tensioned riser[J]. Ship Engineering, 2019, 41(2):101-107. doi:10.13788/j.cnki.cbgc.2019.02.020 [11] SUN L, LIU C F, ZONG Z, et al. Fatigue damage analysis of the deepwater riser from VIV using pseudo-excitation method[J]. Marine Structures, 2014, 37:86-110. doi:10.1016/j.marstruc.2014.03.004 [12] 高云,付世晓,杨家栋,等. 细长柔性立管涡激振动疲劳损伤分析[J]. 上海交通大学学报, 2016, 50(8):1270-1277. doi:10.16183/j.cnki.jsjtu.2016.08.021 GAO Yun, FU Shixiao, YANG Jiadong, et al. Fatigue damage analysis of vortex-induced vibration of a long flexible riser[J]. Journal of Shanghai Jiaotong University, 2016, 50(8):1270-1277. doi:10.16183/j.cnki.jsjtu.2016.08.021 [13] 顾洪禄,郭海燕,刘震. 陡波形立管涡激振动疲劳损伤参数敏感性分析[J]. 中国海洋大学学报(自然科学版), 2021, 51(5):113-121. doi:10.16441/j.cnki.hdxb.2019-0115 GU Honglu, GUO Haiyan, LIU Zhen. Parametric sensitivity analysis of fatigue damage in steep-wave riser due to vortex-induced vibration[J]. Periodical of Ocean University of China, 2021, 51(5):113-121. doi:10.16441/j.cnki.hdxb.20190115 [14] FACCHINETTI M L, LANGRE E, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(2):123-140. doi:10.1016/j.jfluidstructs.2003.12.004 [15] KURUSHINA V, PAVLOVSKAIA E, POSTNIKOV A, et al. Calibration and comparison of VIV wake oscillator models for low mass ratio structures[J]. International Journal of Mechanical Sciences, 2018(142-143):547-560. doi:10.1016/j.ijmecsci.2018.04.027 [16] 冯绍军,熊友明,高云. 刚性圆柱体涡激振动响应模态特性研究[J]. 石油工程建设, 2018, 44(2):17-21. doi:10.3969/j.issn.1001-2206.2018.02.004 FENG Shaojun, XIONG Youming, GAO Yun. Mode characteristics study on vortex-induced vibration of rigid cylinder[J]. Petroleum Engineering Construction, 2018, 44(2):17-21. doi:10.3969/j.issn.1001-2206.2018.02.004 [17] XU Wanhai, WU Yingxiang, ZENG Xiaohui, et al. A new wake oscillator model for predicting vortex induced vibration of a circular cylinder[J]. Journal of Hydrodynamics, 2010, 22:381-386. doi:10.1016/s1001-6058(09)60068-8 [18] LEI S, ZHENG X Y, KENNEDY D. Dynamic response of a deepwater riser subjected to combined axial and transverse excitation by the nonlinear coupled model[J]. International Journal of Non-Linear Mechanics, 2017, 97:68-77. doi:10.1016/j.ijnonlinmec.2017.09.001 [19] Det Norske Veritas. Fatigue design of offshore steel structures:DNV-RP-C203[S]. Norway:Det Norske Veritas, 2010. [20] Det Norske Veritas. Dynamic risers:DNV-OS-F201[S]. Norway:Det Norske Veritas, 2010. |