西南石油大学学报(自然科学版) ›› 2010, Vol. 32 ›› Issue (1): 40-44.DOI: 10.3863/j.issn.1674-5086.2010.01.007

• 地质勘探 • 上一篇    下一篇

基于神经网络的面波迭代反演应用研究

贺懿1,2;张进1;刘怀山1   

  1. 1.中国海洋大学海洋地球科学学院,山东 青岛 266100; 2.中海石油有限公司湛江分公司研究院,广东 湛江 524057
  • 收稿日期:2008-04-15 修回日期:1900-01-01 出版日期:2010-02-20 发布日期:2010-02-20
  • 通讯作者: 贺懿

STUDY ON THE APPLICATION OF ITERATIVE INVERSION OF SURFACE WAVE BASED ON ARTIFICIAL NEURAL NETWORK

HE Yi1,2;ZHANG Jin1;LIU Huai-shan1   

  1. 1.College of Marine Geoscience,Ocean University of China,Qingdao Shandong 266100,China;2.Research Institute,Zhanjiang Company,CNOOC Ltd.,Zhanjiang Guangdong 524057,China
  • Received:2008-04-15 Revised:1900-01-01 Online:2010-02-20 Published:2010-02-20
  • Contact: HE Yi

摘要:

根据滩浅海近地表结构特征,尝试利用地震记录中的面波进行近地表结构研究,以便了解滩浅海地区的近地表地层介质结构变化,为深层油气勘探提供准确的低降速带资料。针对面波频散反演已有方法存在的不足,引入一种基于BP神经网络的迭代反演方法对面波的频散曲线进行拟合迭代,用于反演预测滩浅海低降速带地层参数。由于神经网络具有很强的自学习、自适应、自组织和容错能力,它的反演预测能力非常强大,能够较精确地预测出所要求解的目标数据,同时结合传统迭代反演方法的优点,增强了该方法的反演预测能力。通过对滩浅海近地表结构模型试算,获得好的效果,同时进一步对实际记录进行了计算,也取得了比较满意的结果。

关键词: 滩浅海近地表结构, 面波, 频散曲线, BP神经网络, 迭代反演, 地震勘探

Abstract:

Because traditional methods applied in investigating surfacestructure are restricted on paralic zone,according to the feature of surfacestructure on paralic zone,the try is done to use the surface wave on seismic record to research the surfacestructure and to offer deep exploration activity of weathering zone.In view of shortages in the methods applied in dispersion curve inversion of surface wave,an iterative inversion method based on BP(Backpropagation) artificial neural network is introduced to surface wave and it is used to predict the parameters of eathering zone on paralic zone.Combined with very strong selflearning,selfadapting,selforganizing and faulttolerant ability of neural network,the prediction power of conventional iterative inversion method is enhanced effectively.By testing the model of paralic surfacestructure,the good effect can be obtained.Moreover,applied to real data,the method still gives out satisfactory result.

Key words: surfacestructure on paralic zone, surface wave, dispersion curve, BP artificial neural network, iterative inversion, seismic prospecting

中图分类号: