西南石油大学学报(自然科学版) ›› 2018, Vol. 40 ›› Issue (3): 63-75.DOI: 10.11885/j.issn.1674-5086.2017.12.01.01
冯俊熙1,2, 杨胜雄2, 孙晓明1, 梁金强1,2
收稿日期:
2017-12-01
出版日期:
2018-06-01
发布日期:
2018-06-01
通讯作者:
杨胜雄,E-mail:yangshengxiong@hydz.cn
作者简介:
冯俊熙,1988年生,男,汉族,广东广州人,在站博士后,主要从事海底冷泉与天然气水合物地质研究工作。E-mail:910113049@qq.com;杨胜雄,1964年生,男,汉族,广东揭西人,教授级高级工程师,博士,主要从事海洋地质调查与研究工作。E-mail:yangshengxiong@hydz.cn;孙晓明,1963年生,男,汉族,江苏如皋人,教授,博士,主要从事海洋矿产地质研究工作。E-mail:eessxm@mail.sysu.edu.cn;梁金强,1967年生,男,汉族,广东茂名人,教授级高级工程师,主要从事海洋天然气水合物调查与研究工作。E-mail:ljinqiang@21.cn.com
基金资助:
FENG Junxi1,2, YANG Shengxiong2, SUN Xiaoming1, LIANG Jinqiang1,2
Received:
2017-12-01
Online:
2018-06-01
Published:
2018-06-01
摘要: 为了深入认识南海北部琼东南盆地的甲烷微渗漏活动,通过测试位于该盆地某似海底放射(BSR)发育区内柱状样HQ-6PC和HQ-38PC的孔隙水阴阳离子浓度及δ13CDIC等指标,对甲烷微渗漏活动特征进行了研究。结果显示,在柱状样HQ-6P和HQ-38PC的5.2 m以上部分,硫酸盐消耗由有机质硫酸盐还原作用(OSR)和甲烷缺氧氧化作用(AOM)共同主导,而在柱状样HQ-38PC的5.2 m以下部分主要受AOM的影响。柱状样HQ-38PC的硫酸根甲烷转换界面(SMTZ)埋深为9.9 m,甲烷向上扩散的通量约为32 mmol·m-2·a-1。两个柱状样孔隙水的Mg/Ca和Sr/Ca质量比随深度的变化指示其中形成的自生碳酸盐矿物主要为高镁方解石。HQ-6PC的Cl-浓度在3.5 m以下明显降低,可能有天然气水合物分解时排放的低盐度流体加入,而HQ-38PC在4.0~5.5 m处存在较高的盐度异常,暗示其中可能混入了来自水合物形成时排放的高盐度流体。因此,两个站位浅表层发育显著的甲烷微渗漏活动,其下方可能发育水合物。
中图分类号:
冯俊熙, 杨胜雄, 孙晓明, 梁金强. 琼东南盆地甲烷微渗漏活动地球化学示踪研究[J]. 西南石油大学学报(自然科学版), 2018, 40(3): 63-75.
FENG Junxi, YANG Shengxiong, SUN Xiaoming, LIANG Jinqiang. Geochemical Tracers for Methane Microleakage Activity in the Qiongdongnan Basin[J]. 西南石油大学学报(自然科学版), 2018, 40(3): 63-75.
[1] 陈多福,陈先沛,陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40. doi:10.3969/j.issn.1000-0550.2002.01.007 CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1):34-40. doi:10.3969/j.issn.1000-0550.2002.01.007 [2] HOVLAND M, JENSEN S, FICHLER C. Methane and minor oil macro-seep systems:Their complexity and environmental significance[J]. Marine Geology, 2012, 332:163-173. doi:10.1016/j.margeo.2012.02.014 [3] HEGGLAND R. Gas seepage as an indicator of deeper prospective reservoirs:A study based on exploration 3D seismic data[J]. Marine and Petroleum Geology, 1998, 15(1):1-9. doi:10.1016/S0264-8172(97)00060-3 [4] HOVLAND M, SVENSEN H. Submarine pingoes:Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228(1-4):15-23. doi:10.1016/j.margeo.2005.12.005 [5] BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734. doi:10.1038/ngeo1926 [6] POHLMAN J W, RUPPEL C, HUTCHINSON D R, et al. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9):942-951. doi:10.1016/j.marpetgeo.2008.01.016 [7] CHEN Yifeng, USSLER W, HAFLIDASON H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore MidNorway[J]. Chemical Geology, 2010, 275(3-4):127-138. doi:10.1016/j.chemgeo.2010.04.013 [8] MAZUMDAR A, PEKETI A, JOAO H M, et al. Porewater chemistry of sediment cores off Mahanadi Basin, Bay of Bengal:Possible link to deep seated methane hydrate deposit[J]. Marine and Petroleum Geology, 2014, 49:162-175. doi:10.1016/j.marpetgeo.2013.10.011 [9] BOROWSKI W S, PAULL C K, USSLER W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7):655-658. doi:10.1130/0091-7613(1996) 024<0655:MPWSPI>2.3.CO;2 [10] BOROWSKI W S, PAULL C K, WU Lili. Global and local variations of interstitial sulfate gradients in deepwater, continental margin sediments:Sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1):131-154. doi:10.1016/S00253227(99)00004-3 [11] JØRGENSEN B B, KASTEN S. Sulfur cycling and methane oxidation[M]. Berlin:Springer, 2006:271-309. [12] REGNIER P, DALE A W, ARNDT S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments:A modeling perspective[J]. EarthScience Reviews, 2011, 106(1-2):105-130. doi:10.1016/j.earscirev.2011.01.002 [13] MEISTER P, LIU B, FERDELMAN T G, et al. Control of sulphate and methane distributions in marine sediments by organic matter reactivity[J]. Geochimica et Cosmochimica Acta, 2013, 104:183-193. doi:10.1016/j.gca.2012.11.01 [14] SEITER K, HENSEN C, SCHRÖTER J, et al. Organic carbon content in surface sediments-defining regional provinces[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(12):2001-2026. doi:10.1016/j.dsr.2004.06.014 [15] LEVIN L A, SIBUET M. Understanding continental margin biodiversity:A new imperative[J]. Annual Review of Marine Science, 2012, 4:79-112. doi:10.1146/annurevmarine-120709-142714 [16] LUFF R, WALLMANN K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18):3403-3421. doi:10.1016/S0016-7037(03)00127-3 [17] LIANG Qianyong, HU Yu, FENG Dong, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea:Constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 124:31-41. doi:10.1016/j.dsr.2017.04.015 [18] YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8):752-760. doi:10.1007/s11434-009-0312-2 [19] YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration[J]. Science China Earth Sciences, 2013, 56(4):521-529. doi:10.1007/s11430-012-4560-7 [20] 邬黛黛,吴能友,张美,等. 东沙海域SMI与甲烷通量的关系及对水合物的指示[J]. 地球科学中国地质大学学报, 2013, 38(6):1309-1320. doi:10.3799/dqkx.2013.000 WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in the Dongsha Area, northern South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6):1309-1320. doi:10.3799/dqkx.2013.000 [21] WU L S, YANG S X, LIANG J Q, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea[J]. Science China Earth Sciences, 2013, 56(4):530-540.doi:10.1007/s11430-012-4545-6 [22] YE Hong, YANG Tao, ZHU Guorong, et al. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China Sea[J]. Marine and Petroleum Geology, 2016, 75:68-82. doi:10.1016/j.marpetgeo.2016.03.010 [23] JIANG Shaoyong, YANG Tao, GE Lu, et al. Geochemistry of pore waters from the Xisha Trough, northern South China Sea and their implications for gas hydrates[J]. Journal of Oceanography, 2008, 64(3):459-470. doi:10.1007/s10872-008-0039-8 [24] HU Y, FENG D, LIANG Q, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redoxsensitive elements at cold-seep sites of the northern South China Sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2015, 122:84-94. doi:10.1016/j.dsr2.2015.06.012 [25] 梁金强,付少英,陈芳,等. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5):761-770. doi:10.11764/j.issn.1672-1926.2017.02.006 LIANG Jinqiang, FU Shaoying, CHEN Fang, et al. Characteristics of methane seepage and gas hydrate reservior in the northeastern slope of South China Sea[J]. Natural Gas Geoscience, 2017, 28(5):761-770. doi:10.11764/j.issn.1672-1926.2017.02.006 [26] 张光学,梁金强,陆敬安,等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业, 2014, 34(11):1-10. doi:10.3787/j.issn.1000-0976.2014.11.001 ZHANG Guangxue, LIANG Jinqiang, LU Jing'an, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10. doi:10.3787/j.issn.10000976.2014.11.001 [27] 吴庐山,杨胜雄,梁金强,等. 南海北部琼东南盆地HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544. doi:10.3969/j.issn.1000-8527.2010.03.018 WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at site HQ48PC in Qiongdongnan Area, the north of the South China Sea and their implication for gas hydrates[J]. Geoscience, 2010, 24(3):534-544. doi:10.3969/j.issn.10008527.2010.03.018 [28] 姚伯初. 南海的天然气水合物矿藏[J]. 热带海洋学报,2001,20(2):20-28. doi:10.3969/j.issn.1009-5470.2001.02.004 YAO Bochu. The gas hydrate in the South China Sea[J]. Journal of Tropical Oceanography, 2001, 20(2):20-28. doi:10.3969/j.issn.1009-5470.2001.02.004 [29] 梁金强,王宏斌,苏新,等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135. doi:10.3787/j.issn.1000-0976.2014.07.022 LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7):128-135. doi:10.3787/j.issn.1000-0976.2014.07.022 [30] 陈多福,姚伯初,赵振华,等. 珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J]. 海洋地质与第四纪地质, 2001, 21(4):73-78. doi:10.16562/j.cnki.0256-1492.2001.04.014 CHEN Duofu, YAO Bochu, ZHAO Zhenhua, et al. Geochemical constraints and potential distributions of gas hydrates in Pearl River Mouth Basin and Qiongdongnan Basin in the northern margin of the South China Sea[J]. Marine Geology and Quaternary Geology, 2001, 21(4):73-78. doi:10.16562/j.cnki.0256-1492.2001.04.014 [31] 陈多福,李绪宣,夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3):483-489. doi:10.3321/j.issn:0001-5733.2004.03.018 CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J]. 2004, 47(3):483-489. doi:10.3321/j.issn:0001-5733.2004.03.018 [32] SCHULZ H D. Quantification of early diagenesis:Dissolved constituents in pore water and signals in the solid phase[M]//SCHULZ H D, ZABEL M Eds. Marine Geochemistry. Berlin:Springer, 2006:73-124. [33] LI Yuanhui, GREGORY S. Diffusion of ions in sea water and in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1974, 38(5):703-714. doi:10.1016/0016-7037(74)90145-8 [34] Shipboard Scientific Party. Site 1146. In:WANG P X, PRELL W L, BLUM P, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 184[R]. College Station, Texas:Texas A & M University (Ocean Drilling Program), 2000:1-101. [35] HESSE R, HARRISON W E. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J]. Earth and Planetary Science Letters, 1981, 55(3):453-462. doi:10.1016/0012821X(81)90172-2 [36] USSLER W, PAULL C K. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition[J]. Geo-Marine Letters, 1995, 15(1):37-44. doi:10.1007/BF01204496 [37] HESSE R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface:What have we learned in the past decade?[J]. Earth-Science Reviews, 2003, 61(1):149-179. doi:10.1016/S0012-8252(02)00117-4 [38] DÄHLMANN A, DE LANGE G J. Fluid-sediment interactions at Eastern Mediterranean mud volcanoes:A stable isotope study from ODP Leg 160[J]. Earth and Planetary Science Letters, 2003, 212(3-4):377-391. doi:10.1016/S0012-821X(03)00227-9 [39] ALOISI G, DREWS M, WALLMANN K, et al. Fluid expulsion from the Dvurechenskii mud volcano (Black Sea):Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles[J]. Earth and Planetary Science Letters, 2004, 225(3-4):347-363. doi:10.1016/S0012-821X(04)00415-7 [40] ZHU Youhai, HUANG Yongyang, MATSUMOTO R, et al. Geochemical and stable isotopic compositions of pore fluids and authigenic siderite concretions from site 1146, ODP Leg 184:implication for gas hydrate[R]. In:Prell W L, Wang P, Rea D K, Clemans S C, eds. Proceedings of the ODP, Scientific Results, 2002, 184:1-15. doi:10.2973/odp.proc.sr.184.202.2003 [41] 杨涛,蒋少涌,葛璐,等. 南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 第四纪研究, 2006, 26(3):442-448. doi:10.3321/j.issn:1001-7410.2006.03.017 YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemical characteristics of sediment pore water from site XS-01 in the Xisha Trough of South China Sea and their significance for gas hydrate occurrence[J]. Quaternary Sciences, 2006, 26(3):442-448. doi:10.3321/j.issn:1001-7410.2006.03.017 [42] 吴能友,张海啟,杨胜雄,等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007, 27(9):1-6. doi:10.3321/j.issn:1000-0976.2007.09.001 WU Nengyou, ZHANG Haiqi, YANG Shengxiong, et al. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu Area, north slope of South China Sea[J]. Natural Gas Industry, 2007, 27(9):1-6. doi:10.3321/j.issn:1000-0976.2007.09.001 [43] LUO Min, CHEN Linying, TONG Hongpeng, et al. Gas hydrate occurrence inferred from dissolved Cl- concentrations and δ18O values of pore water and dissolved sulfate in the shallow sediments of the Pockmark Field in Southwestern Xisha Uplift, Northern South China Sea[J]. Energies, 2014, 7(6):3886-3899. doi:10.3390/en7063886 [44] 祝有海,饶竹,刘坚,等. 南海西沙海槽S14站位的地球化学异常特征及其意义[J]. 现代地质, 2005, 19(1):39-44. doi:10.3969/j.issn.1000-8527.2005.01.006 ZHU Youhai, RAO Zhu, LIU Jian, et al. Geochemical anomalies and their implication from site 14, the Xisha Trough, the South China Sea[J]. Geoscience, 2005, 19(1):39-44. doi:10.3969/j.issn.1000-8527.2005.01.006 [45] CHUANG Peichuan, DALE A W, WALLMANN K, et al. Relating sulfate and methane dynamics to geology:Accretionary prism offshore SW Taiwan[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7):2523-2545. doi:10.1002/ggge.20168 [46] 何家雄,卢振权,苏丕波,等. 南海北部天然气水合物气源系统与成藏模式[J]. 西南石油大学学报(自然科学版),2016,38(6):8-24. doi:10.11885/j.issn.16745086.2016.09.03.01 HE Jiaxiong, LU Zhenquan, SU Pibo, et al. Source Supply System and Reservoir Forming Model Prediction of Natural Gas Hydrate in the Deep Water Area of the Northern South China Sea[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(6):8-24. doi:10.11885/j.issn.16745086.2016.09.03.01 [47] TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1-2):225-241. doi:10.1016/j.epsl.2004.07.029 [48] MALINVERNO A, POHLMAN J W. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments:Does a sulfate-methane transition require anaerobic oxidation of methane?[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7):Q07006. doi:10.1029/2011GC003501 [49] MASUZAWA T, HANDA N, KITAGAWA H, et al. Sulfate reduction using methane in sediments beneath a bathyal "cold seep" giant clam community off Hatsushima Island, Sagami Bay, Japan[J]. Earth and Planetary Science Letters, 1992, 110(1-4):39-50. doi:10.1016/0012821X(92)90037-V [50] LUO Min, CHEN Linying, WANG Shuhong, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 48:247-259. doi:10.1016/j.marpetgeo.2013.08.018 [51] SNYDER G T, HIRUTA A, MATSUMOTO R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2007, 54(11-13):1216-1239. doi:10.1016/j.dsr2.2007.04.001 [52] KIM J H, PARK M H, CHUN J H, et al. Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin:High alkalinity escape fuelled by biogenically sourced methane[J]. GeoMarine Letters, 2011, 31(1):37-49. doi:10.1007/s00367010-0214-y [53] HONG Weili, TORRES M E, KIM J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin[J]. Biogeochemistry, 2013, 115(1-3):129-148. doi:10.1007/s10533-0129824-y [54] BOROWSKI W S, HOEHLER T M, ALPERIN M J, et al. Significance of anaerobic methane oxidation in methanerich sediments overlying the Blake Ridge gas hydrates[C]. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164:87-99. doi:10.2973/odp.proc.sr.164.214.2000 [55] 陈法锦,陈建芳,金海燕,等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报,2012,30(2):340-345. doi:10.14027/j.cnki.cjxb.2012.02.013 CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of δ13Corg in surface sediments with sinking particulate matter in South China Sea and implication for reconstructing paleo-environment[J]. Acta Sedimentologica Sinica, 2012, 30:340-345. doi:10.14027/j.cnki.cjxb.2012.02.013 [56] WU Daidai, WU Nengyou, YE Ying, et al. Early diagenesis records and pore water composition of methane-seep sediments from the Southeast Hainan Basin, South China Sea[J]. Journal of Geological Research, 2011. doi:10.1155/2011/592703 [57] NÖTHEN K, KASTEN S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan[J]. Marine Geology, 2011, 287(1-4):1-13. doi:10.1016/j.margeo.2011.06.008 [58] PECKMANN J, THIEL V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205(3-4):443-467. doi:10.1016/j.chemgeo.2003.12.025 [59] SCHRAG D P, HIGGINS J A, MACDONALD F A, et al. Authigenic carbonate and the history of the global carbon cycle[J]. Science, 2013, 339(6119):540-543. doi:10.1126/science.1229578 [60] SUN X, TURCHYN A V. Significant contribution of authigenic carbonate to marine carbon burial[J]. Nature Geoscience, 2014, 7(3):201-204. doi:10.1038/ngeo2070 [61] BURTON E A. Controls on marine carbonate cement mineralogy:Review and reassessment[J]. Chemical Geology, 1993, 105(1-3):163-179. doi:10.1016/00092541(93)90124-2 [62] PECKMANN J, REIMER A, LUTH U, et al. Methanederived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1):129-150. doi:10.1016/S0025-3227(01)00128-1 [63] GIESKES J, MAHN C, DAY S, et al. A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments:Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin[J]. Chemical Geology, 2005, 220(3-4):329-345. doi:10.1016/j.chemgeo.2005.04.002 |
[1] | 周建, 宋延杰, 姜艳娇, 孙钦帅, 靖彦卿. 海洋天然气水合物测井评价研究进展[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 85-93. |
[2] | 白慧, 冯敏, 侯科锋, 杨特波, 郭思文. 苏里格气田东区马五5储层白云岩成因机理分析[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 65-73. |
[3] | 杨希冰, 金秋月, 胡林, 胡德胜. 北部湾盆地涠西南凹陷原油成因类型及分布特征[J]. 西南石油大学学报(自然科学版), 2019, 41(3): 51-60. |
[4] | 刘忠亮, 张成富, 李清辰, 刘军, 安海玲. 东濮凹陷西南部晚古生代-早新生代烃源研究[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 35-45. |
[5] | 江汝锋, 郭明刚, 朱继田, 周杰, 向远高. 琼东南盆地深水区宝岛凹陷3D输导体系评价[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 57-66. |
[6] | 刘建军, 邵祖亮, 郑永香. 天然气水合物降压分解过程的数值模拟[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 80-90. |
[7] | 何家雄, 卢振权, 苏丕波, 张伟, 冯俊熙. 南海北部天然气水合物气源系统与成藏模式[J]. 西南石油大学学报(自然科学版), 2016, 38(6): 8-24. |
[8] | 张楠楠1,2 *,周可法1,2,程宛文1,2. Au 元素空间特征分析及异常提取方法研究[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 82-89. |
[9] | 张炜1,2 *,李新仲1,李清平1,曹静1. 天然气水合物分解超孔隙压力研究[J]. 西南石油大学学报(自然科学版), 2015, 37(4): 107-116. |
[10] | 张廷山1,2 *,伍坤宇1,2,杨洋1,2,罗玉琼1,龚齐森3. 牛蹄塘组页岩气储层有机质微生物来源的证据[J]. 西南石油大学学报(自然科学版), 2015, 37(2): 1-10. |
[11] | 高波1 *,周雁2,沃玉进2,刘全有2,袁玉松2. 凯里残余油气藏多期成藏的地球化学示踪研究[J]. 西南石油大学学报(自然科学版), 2015, 37(2): 21-28. |
[12] | 苏丕波1,2,梁金强1,2,沙志彬1,2,付少英1,2. 神狐深水海域天然气水合物成藏的气源条件[J]. 西南石油大学学报(自然科学版), 2014, 36(2): 1-8. |
[13] | 康素芳;向宝力;廖健德;阿布力米提 依明;孙平安. 准噶尔盆地南缘三叠系烃源岩地球化学特征[J]. 西南石油大学学报(自然科学版), 2012, 34(2): 43-53. |
[14] | 彭金宁 刘光祥 罗开平 吕俊祥. 凯里地区油源对比及油气成藏史分析[J]. 西南石油大学学报(自然科学版), 2011, 33(3): 61-66. |
[15] | 王斌; 吴明 王绪龙 张越迁 曹剑. 准噶尔盆地腹部三叠系烃源岩特征与评价[J]. 西南石油大学学报(自然科学版), 2011, 33(2): 12-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||