[1] GRAHAM S A, BRASSELL S, CARROLL A R. Characteristics of selected petroleum source rocks, Xinjiang Uygur Autonomous Region, northwest China[J]. American Association of Petroleum Geologists Bulletin, 1990, 74(4):493-512. doi:10.1306/0c9b233f-1710-11d7-8645-000102c1865d [2] 韩剑发,孙崇浩,王振宇,等. 塔中隆起碳酸盐岩叠合复合岩溶模式与油气勘探[J]. 地球科学, 2017, 42(3):410-420. doi:10.3799/dqkx.2017.031 HAN Jianfa, SUN Chonghao, WANG Zhenyu, et al. Superimposed compound karst model and oil and gas exploration of carbonate in the Tazhong Uplift[J]. Earth Science, 2017, 42(3):410-420. doi:10.3799/dqkx.2017.031 [3] 周新源,吕修祥,杨海军,等. 塔中北斜坡走滑断裂对碳酸盐岩油气差异富集的影响[J]. 石油学报, 2013, 34(4):628-635. doi:10.7623/syxb201304002 ZHOU Xinyuan, LÜ Xiuxiang, YANG Haijun, et al. Effects of strike-slip faults on the differential enrichment of hydrocarbons in the northern sloppe of Tazhong Area[J]. Acta Petrolei Sinca, 2013, 34(4):628-635. doi:10.7623/-syxb201304002 [4] LI Sumei, AMRANI A, PANG Xiongqi, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78:1-22. doi:10.1016/j.orggeochem.2014.10.004 [5] LAN Xiaodong, LÜ Xiuxiang, ZHU Yanming, et al. The geometry and origin of strike-slip faults cutting the Tazhong Low Rise megaanticline (Central Uplift, Tarim Basin, China) and their control on hydrocarbon distribution in carbonate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 22:633-645. doi:10.1016/-j.jngse.2014.12.030 [6] 韩杰,江杰,张敏,等. 断裂及其裂缝发育带在塔中油气勘探中的意义[J]. 西南石油大学学报(自然科学版), 2015, 37(2):11-20. doi:10.11885/j.issn.1674-5086.2013.06.09.01 HAN Jie, JIANG Jie, ZHANG Min, et al. Significance of fault and fracture developing area in oil and gas exploration in Tazhong[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(2):11-20. doi:10.11885/j.issn.1674-5086.2013.06.09.01 [7] 于红枫,白忠凯,邓力萍,等. 塔中下奥陶统鹰山组不整合面的确定及其地质意义[J]. 新疆石油地质, 2011, 32(3):231-234. YU Hongfeng, BAI Zhongkai, DENG Liping, et al. Determination and geologic significance of Yingshan unconformity of Lower Ordovician in Tazhong Area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3):231-234. [8] 傅恒,韩建辉,孟万斌,等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J]. 天然气工业,2017,37(3):25-35. doi:10.3787/j.issn.1000-0976.-2017.03.004 FU Heng, HAN Jianhui, MENG Wanbin, et al. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin[J]. Natural Gas Industry, 2017, 37(3):25-35. doi:10.3787/j.issn.-1000-0976.2017.03.004 [9] 罗春树,杨海军,李江海,等. 塔中奥陶系优质储集层特征及断裂控制作用[J]. 石油勘探与开发, 2011, 38(6):716-724. LUO Chunshu, YANG Haijun, LI Jianghai, et al. Characteristics of high quality Ordovician reservoirs and controlling effects of faults in the Tazhong Area, Tarim Basin[J]. Petroleum Exploration and Development, 2011, 38(6):716-724. [10] WU Guanghui, YANG Haijun, HE Shu, et al. Effects of structural segmentation and faulting on carbonate reservoir properties:A case study from the central uplift of the Tarim Basin, China[J]. Marine and Petroleum Geology, 2016, 71:183-197. doi:10.1016/j.marpetgeo.2015.12.008 [11] 沈卫兵,庞雄奇,陈践发,等. 塔里木盆地塔中Ⅱ 区奥陶系油气差异性分布及其主控因素分析[J]. 地质论评, 2018, 64(4):913-926. doi:10.16509/j.georeview.-2018.04.009 SHEN Weibing, PANG Xiongqi, CHEN Jianfa, et al. Differential hydrocarbon distribution and its key controlling factor, Tazhong Ⅱ Area, NW China[J]. Geologicl Review, 2018, 64(4):913-926. doi:10.16509/j.georeview.2018.-04.009 [12] LÜ Xiuxiang, WANG Yafang, YU Hongfeng, et al. Major factors affecting the closure of marine carbonate caprock and their quantitative evaluation:A case study of Ordovician rocks on the northern slope of the Tazhong Uplift in the Tarim Basin, western China[J]. Marine and Petroleum Geology, 2017, 83:231-245. doi:10.1016/j.marpetgeo.-2017.03.006 [13] 张保涛,于炳松,苏劲,等. 塔中西部平台区油气分布差异性及其主控因素[J]. 西南石油大学学报(自然科学版), 2014, 36(5):49-58. doi:10.11885/j.issn.1674-5086.2012.08.30.09 ZHANG Baotao, YU Bingsong, SU Jin, et al. Differential hydrocarbon distribution and its main controlling factors of plat area in western Tazhong[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(5):49-58. doi:10.11885/j.issn.1674-5086.2012.08.30.09 [14] 朱心健,陈践发,贺礼文,等. 塔里木盆地麦盖提斜坡罗斯2井油气地球化学特征及油气源分析[J]. 天然气地球科学,2017,28(4):566-574. doi:10.11764/j.issn.-1672-1926.2017.03.001 ZHU Xinjian, CHEN Jianfa, HE Liwen, et al. Geochemical characterics and source correlation of hydrocarbon in the Well Luosi 2 of Maigaiti Slope, Tarim Basin, China[J]. Natural Gas Geoscience, 2017, 28(4):566-574. doi:10.-11764/j.issn.1672-1926.2017.03.001 [15] 王飞宇,张水昌,张宝民,等. 塔里木盆地寒武系海相烃源岩有机成熟度及演化史[J]. 地球化学, 2003, 32(5):461-468. doi:10.3321/j.issn:0379-1726.2003.05.007 WANG Feiyu, ZHANG Shuichang, ZHANG Baomin, et al. Maturity and its history of Cambrian marine source rocks in the Tarim Basin[J]. Geochimica, 2003, 32(5):461-468. doi:10.3321/j.issn:0379-1726.2003.05.007 [16] 庞雄奇,陈冬霞,张俊,等. 相-势-源复合控油气成藏机制物理模拟实验研究[J]. 古地理学报, 2013, 15(5):575-595. doi:10.7605/gdlxb.2013.05.046 PANG Xiongqi, CHEN Dongxia, ZHANG Jun, et al. Physical simulation experimental study on mechanism for hydrocarbon accumulation controlled by facies-potentialsource coupling[J]. Journal of Palaeogeography, 2013, 15(5):575-595. doi:10.7605/gdlxb.2013.05.046 [17] ROBETS S J, NUNN J A, CATHLES L, et al. Expulsion of abnormally pressured fluids along faults[J]. Journal of Geophysical Research, 1996, 101(B12):28231-28252. doi:10.1029/96jb02653 [18] 李明诚,单秀琴,马成华,等. 砂岩透镜体成藏的动力学机制[J]. 石油与天然气地质, 2007, 28(2):209-215. doi:10.3321/j.issn:0253-9985.2007.02.012 LI Mingcheng, SHAN Xiuqin, MA Chenghua, et al. Dynamics of sand lens reservoir[J]. Oil & Gas Geology, 2007, 28(2):209-215. doi:10.3321/j.issn:0253-9985.2007.02.-012 [19] PITTMAN E D. Relationship of porosity and permeability to various parameters[J]. Association of Petroleum Geologists Bulletin, 1992, 76:191-198. doi:10.1306/bdff87a4-1718-11d7-8645000102c1865d [20] CHEN Dongxia, PANG Xiongqi, KUANG Jun, et al. Control of facies and potential on Jurassic hydrocarbon accumulation and prediction of favourable targets in the Hinterland region of the Junggar Basin[J]. Acta Geologica Sinica (English Edition), 2010, 84(5):1256-1272. [21] PANG Hong, CHEN Junqing, PANG Xiongqi, et al. Key factors controlling hydrocarbon accumulations in Ordovician carbonate reservoirs in the Tazhong Area, Tarim Basin, western China[J]. Marine and Petroleum Geology, 2013, 43, 88-101. doi:10.1016/j.marpetgeo.2013.03.002 [22] WANG Yangyang, CHEN Jianfa, PANG Xiongqi, et al. Origin of deep sour natural gas in the Ordovician Carbonate reservoir of the Tazhong Uplift, Tarim Basin, northwest China:Insights from gas geochemistry and formation water[J]. Marine and Petroleum Geology, 2018, 91:532-549. doi:10.1016/j.marpetgeo.2018.01.029 [23] 张仲培,王毅,云金表,等. 塔中地区断裂不同演化阶段对油气聚集的控制[J]. 石油与天然气地质, 2009, 30(3):316-324. doi:10.3321/j.issn:0253-9985.-2009.03.010 ZHANG Zhongpei, WANG Yi, YUN Jinbiao, et al. Control of faults at different evolution stage on hydrocarbon accumulation in Tazhong Area, Tarim Basin[J]. Oil & Gas Geology, 2009, 30(3):316-324. doi:10.3321/j.issn:0253-9985.2009.03.010 [24] LI Chuanxin, WANG Xiaofeng, LI Benliang, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1):48-58. doi:10.1016/j.marpetgeo.2012.09.010 [25] 庞宏,庞雄奇,石秀平,等. 调整改造作用对塔中油气藏的影响[J]. 西南石油大学学报(自然科学版), 2010, 32(1):33-39. doi:10.3863/j.issn.1674-5086.2010.01.-006 PANG Hong, PANG Xiongqi, SHI Xiuping, et al. The influence of adjustment and modification on hydrocarbon accumulation in Tazhong Area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(1):33-39. doi:10.3863/j.issn.1674-5086.2010.-01.006 [26] SHEN Weibing, PANG Xiongqi, JIANG Fujie, et al. Accumulation model based on factors controlling Ordovician hydrocarbons generation, migration, and enrichment in the Tazhong Area, Tarim Basin[J]. Arabia Journal of Geoscience, 2016, 9:347-369. doi:10.1007/s12517-016-2319-8 [27] PANG Hong, CHEN Junqing, PANG Xiongqi, et al. Analysis of secondary migration of hydrocarbons in the Ordovician carbonate reservoirs in the Tazhong Uplift, Tarim Basin, China[J]. AAPG Bulletin, 2013, 97(10):1765-1783. doi:10.1306/04231312099 [28] XIANG Caifu, PANG Xiongqi, YANG Wenjing, et al. Hydrocarbon migration and accumulation along the fault intersection zone-A case study on the reef-flat systems of the No. 1 slope break zone in the Tazhong Area, Tarim Basin[J]. Petroleum Science, 2010, 7(2):211-225. doi:10.1007/s12182-010-0021-0 [29] 杨海军,朱光有,韩剑发,等. 塔里木盆地塔中礁滩体大油气田成藏条件与成藏机制研究[J]. 岩石学报, 2011, 27(6):1865-1885. YANG Haijun, ZHU Guangyou, HAN Jianfa, et al. Condition and mechanism of hydrocarbon accumulation in large reef-bank Karst Oil/Gas Fields of Tazhong Area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(6):1865-1885. [30] 杨海军,邬光辉,韩剑发,等.塔里木盆地中央隆起带奥陶系碳酸盐岩台缘带油气富集特征[J]. 石油学报, 2007, 28(4):26-30. doi:10.7623/syxb200704005 YANG Haijun, WU Guanghui, HAN Jianfa, et al. Characteristics of hydrocarbon enrichment along the Ordovician Carbonate platform margin in the central uplift of Tarim Basin[J]. Acta Petrolei Sinica, 2007, 28(4):26-30. doi:10.7623/syxb200704005 [31] ZHU Guangyou, ZHANG Baotao, YANG Haijun, et al. Origin of deep strata gas of Tazhong in Tarim Basin, China[J]. Organic Geochemistry, 2014, 74:85-97. doi:10.1016/j.orggeochem.2014.03.003 [32] ZHANG Shuichang, HUANG Haiping. Geochemistry of Paleozoicmarine petroleum from the Tarim Basin, NW China:Part 1. Oil family classification[J]. Organic Geochemistry, 2005, 36(8):1204-1214. doi:10.1016/j.orggeochem.2005.01.013 [33] PRATSCH J C. The distribution of major oil and gas reserves in regional basin structures, an example from the Powder river basin, Wyoming, USA[J]. Journal of Petroleum Geology, 1986, 9(4):393-412. doi:10.1306/-bf9ab666-0eb6-11d7-8643000102c1865d [34] 郝芳,邹华耀,姜建群. 油气成藏动力学及其研究进展[J]. 地学前缘(中国地质大学,北京), 2000, 7(3):11-20. doi:10.3321/j.issn:1005-2321.2000.03.002 HAO Fang, ZOU Huayao, JIANG Jianqun. Dynamics of petroleum accumulation and its advances[J]. Earth Science (China University of Geosciences, Beijing), 2000, 7(3):11-20. doi:10.3321/j.issn:1005-2321.2000.03.002 [35] GARTRELL A, ZHANG Yanhua, LISK M, et al. Fault intersections as critical hydrocarbon leakage zones:Integrated field study and numerical modelling of an example from the Timor Sea, Australia[J]. Marine and Petroleum Geology, 2004, 21:1165-1179. doi:10.1016/j.-marpetgeo.2004.08.001 [36] CROW D. Fluid flow at fault intersections in an active oblique collision[J]. Journal of Geochemical Exploration, 2000, 69-70:523-526. doi:10.1016/s0375-6742-(00)00094-7 |