西南石油大学学报(自然科学版) ›› 2020, Vol. 42 ›› Issue (6): 89-96.DOI: 10.11885/j.issn.1674-5086.2020.06.05.01

• 油气田人工智能技术与应用专刊 • 上一篇    下一篇

基于灰色网络组合优化的年增油量预测

刘浩瀚1,2, 颜永勤3, 闵令元4, 乐平5, 殷艳玲4   

  1. 1. 四川建筑职业技术学院基础教学部, 四川 德阳 618000;
    2. 西南石油大学地质资源与地质工程博士后流动站, 四川 成都 610500;
    3. 四川建筑职业技术学院经济管理系, 四川 德阳 618000;
    4. 中国石化胜利油田分公司勘探开发研究院, 山东 东营 257000;
    5. 西南石油大学石油与天然气工程学院, 四川 成都 610500
  • 收稿日期:2020-06-05 发布日期:2020-12-21
  • 通讯作者: 刘浩瀚,E-mail:tsinghua616@163.com
  • 作者简介:刘浩瀚,1985年生,男,汉族,湖南常德人,副教授,博士(后),主要从事人工智能算法、数学建模及油田应用方面的研究。E-mail:tsinghua616@163.com;颜永勤,1989年生,女,汉族,四川资阳人,讲师,硕士,主要从事电子商务、全全生命周期管理及油田应用研究。E-mail:yanyongqin77@126.com;闵令元,1963年生,男,汉族,山东聊城人,高级工程师,主要从事油气田开发及渗流机理等方面的研究工作。E-mail:yinyanling.slyt@sinopec.com;乐平,1983年生,男,汉族,湖北随州人,副教授,博士,主要从事油藏数值模拟研究。E-mail:yuepingaa@126.com;殷艳玲,1975年生,女,汉族,甘肃金塔人,高级工程师,主要从事油气田开发及油气层保护实验方面的研究。E-mail:yinyanling.slyt@sinopec.com
  • 基金资助:
    中国石化胜利油田分公司科技项目(YKY1913);四川省教育厅项目(15ZB0447,18ZB0394);西华大学校人才引进项目(Z201076)

Prediction of Annual Increase of Oil Production Based on GM (1, 1)Neural Network Combined Optimization

LIU Haohan1,2, YAN Yongqin3, MIN Lingyuan4, YUE Ping5, YIN Yanling4   

  1. 1. Basic Teaching Department of Sichuan College of Architectural Technology, Deyang, Sichuan 618000, China;
    2. Postdoctoral Station of Geological Resources and Geological Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    3. Economic Management Department of Sichuan College of Architectural Technology, Deyang, Sichuan 618000, China;
    4. Research Institute of Exploration and Development of Sinopec Shengli Oilfield Branch, Dongying, Shandong 257000, China;
    5. School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2020-06-05 Published:2020-12-21

摘要: 老井措施增油成为油田稳产、降低油田区块开发成本的必然选择。针对多项式回归预测的局限性、灰色理论不能反映影响因素特征、神经网络需求数据多且数据敏感性差等特征,通过建立最优控制模型,实现GM(1,1)灰色理论与神经网络的高精度组合预测。以某油田区块2011-2018年的措施增油为例,对影响措施增油量的因素进行识别,建立了最优控制灰色神经网络模型对老井措施年增油量进行预测,相比多项式回归预测、GM(1,1)预测及BP神经网络预测方法,新模型模拟效果更好,预测精度更高。新方法对2018年措施年增油量的预测精度达97.34%。基于最优控制的灰色神经网络模型可以作为一种人工智能组合最优化模型预测措施年增油量,为准确预测措施增油效果,指导油田开发决策提供了新的思路。

关键词: 措施有效井, 年增油量, 灰色预测, BP神经网络, 最优控制

Abstract: Increasing oil production of old wells has become an inevitable choice to stabilize production and reduce development costs of oilfield block development. In view of the limitation of polynomial regression prediction, the fact that the grey theory cannot reflect the characteristics of influence factors, and the neural network needs more data and is less sensitive to data, this paper establishes an optimal control model, combining the high precision forecasting of grey theory with the neural network. Taking the actual measures to increase oil production in an oilfield block from 2011 to 2018 as an example, by confirming the influence factors of annual oil increment, a new optimal control grey neural network model is established, which is used to predict the annual oil increment with different measures. Compared with polynomial regression prediction, GM(1, 1) prediction and BP neural network prediction, the results show that the new model has better simulation effect and higher prediction precision. The prediction accuracy of the annual oil increment with the new method is 97.34% in 2018. The grey neural network model based on optimal control can be an artificial intelligence model to predict the annual oil increment with different measures, which provides a new idea for accurately predicting of oil increment with different measures and decision-making of oilfield development.

Key words: measure effective well, annual oil increment, grey prediction, BP neural network, optimal control

中图分类号: