西南石油大学学报(自然科学版) ›› 2021, Vol. 43 ›› Issue (3): 101-110.DOI: 10.11885/j.issn.16745086.2020.04.07.01
李一波1, 何天双1, 胡志明2, 李亚龙2, 蒲万芬1
收稿日期:
2020-04-07
发布日期:
2021-06-22
通讯作者:
李一波,E-mail:liyibo@swpu.edu.cn
作者简介:
李一波,1986年生,男,汉族,四川南充人,副教授,博士,主要从事提高采收率方面的研究。E-mail:liyibo@swpu.edu.cn基金资助:
LI Yibo1, HE Tianshuang1, HU Zhiming2, LI Yalong2, PU Wanfen1
Received:
2020-04-07
Published:
2021-06-22
摘要: 通过调研近二十年国内外页岩油藏提高采收率技术的室内研究和现场应用,结合页岩油藏储层特征,总结了开发过程中的难点,并针对各类提高页岩油藏采收率技术的作用机理,讨论了对页岩油藏的适应性。研究表明,注气是页岩油藏补充地层能量的最佳方法,二氧化碳和天然气是常用的注入介质,但其作用机理还有待深入探讨;通过改善储层润湿性来提高渗吸效果是表面活性剂和低矿化度水的主要机理;泡沫驱拥有良好注入性的同时能够有效调整裂缝性油藏的非均质性,但是其在裂缝中的稳定性有待加强;热力采油可以改变储层的热应力,诱导裂缝扩张,增大注入介质的波及范围。溶剂和纳米材料在机理上有改善页岩储层润湿性的作用,但是其在页岩油藏开发中的可行性还有待验证。
中图分类号:
李一波, 何天双, 胡志明, 李亚龙, 蒲万芬. 页岩油藏提高采收率技术及展望[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 101-110.
LI Yibo, HE Tianshuang, HU Zhiming, LI Yalong, PU Wanfen. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 101-110.
[1] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型,特征,机理及展望——以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187. doi:10.7623/syxb201202001 ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187. doi:10.7623/syxb201202001 [2] AGENCY I E, BIROL F. World energy outlook 2013[C]. Paris:International Energy Agency, 2013. doi:10.1787/20725302 [3] KUMAR S, HOFFMAN T, PRASAD M. Upper and lower Bakken shale production contribution to the middle Bakken reservoir[C]. Denver, Colorado:Unconventional Resources Technology Conference, 2013.doi:10.1190/urtec2013-001 [4] 王香增,张丽霞,雷裕红,等. 低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长7油层组页岩为例[J]. 石油学报,2018,39(2):141-151. doi:10.7623/syxb201802002 WANG Xiangzeng, ZHANG Lixia, LEI Yuhong, et al. Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:A case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation, Southeastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(2):141-151. doi:10.7623/syxb201802002 [5] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26. doi:10.1016/S1876-3804(13)60002-6 ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development countermeasures of shale oil[J]. Petroleum Exploration and Development, 2013, 40(1):14-26. doi:10.1016/S1876-3804(13)60002-6 [6] SHENG J J. Chapter one—Introduction to shale and tight reservoirs[M]//SHENG J J. Enhanced oil recovery in shale and tight reservoirs. Huston:Gulf Professional Publishing, 2020. doi:10.1016/B978-0-12-815905-7.00001-3 [7] SHENG J J. Enhanced oil recovery in shale reservoirs by gas injection[J]. Journal of Natural Gas Science and Engineering, 2015, 22:252-259. doi:10.1016/j.jngse.2014.12.002 [8] 周庆凡,杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质,2012,33(4):541-544,570. ZHOU Qingfan, YANG Guofeng. Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4):541-544, 570. [9] 胡素云,赵文智,侯连华,等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发,2020,47(4):819-828. doi:10.11698/PED.2020.04.19 HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4):819-828. doi:10.11698/PED.2020.04.19 [10] WAN T, SHENG J J. Enhanced recovery of crude oil from shale formations by gas injection in zipper-fractured horizontal wells[J]. Petroleum Science and Technology, 2015, 33:1605-1610. doi:10.1080/10916466.2015.1079536 [11] 张士诚,李四海,邹雨时,等. 页岩油水平井多段压裂裂缝高度扩展试验[J]. 中国石油大学学报(自然科学版),2021,45(1):77-86. doi:10.3969/j.issn.1673-5005.2021.01.009 ZHANG Shicheng, LI Sihai, ZOU Yushi, et al. Experimental study on fracture height propagation during multi-stage fracturing of horizontal wells in shale oil reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1):77-86. doi:10.3969/j.issn.1673-5005.2021.01.009 [12] 光新军,王敏生. 北美页岩油气重复压裂关键技术及建议[J]. 石油钻采工艺,2019,41(2):224-229. doi:10.13639/j.odpt.2019.02.016 GUANG Xinjun, WANG Minsheng. Re-fracturing key technologies ofshale oil and gas in North America and the suggestions[J]. Oil Drilling & Production Technology, 2019, 41(2):224-229. doi:10.13639/j.odpt.2019.02.016 [13] 蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 [14] 郭玉杰,刘平礼,郭肖,等. 多级水平井压裂注CO2开采页岩气影响因素分析[J]. 油气藏评价与开发,2016,6(2):64-68. doi:10.3969/j.issn.2095-1426.2016.02.015 GUO Yujie, LIU Pingli, GUO Xiao, et al. Influential factors analysis of shale gas exploitation by CO2 injection of multi-stage horizontal well fracturing[J]. Reservoir Evaluation and Development, 2016, 6(2):64-68. doi:10.3969/j.issn.2095-1426.2016.02.015 [15] WAN T, SHENG J J, SOLIMAN M Y, et al. Effect of fracture characteristics on behavior of fractured shale oil reservoirs by cyclic gas injection[J]. SPE Reservoir Evaluation and Engineering, 2016, 19(2):350-355. doi:10.2118/168880-PA [16] WAN T, SHENG J J. Evaluation of the EOR potential in hydraulically fractured shale oil reservoirs by cyclic gas injection[J]. Petroleum Science and Technology, 2015, 33(7):812-818. doi:10.1080/10916466.2015.1010041 [17] ALFARGE D, WEI M, BAI B. In IOR methods in unconventional reservoirs of North America:Comprehensive review[C]. SPE Western Regional Meeting, Society of Petroleum Engineers. 2017. SPE 185640-MS, 2017. doi:10.2118/185640-MS [18] ALHARTHY N, TEKLU T W, KAZEMI H, et al. Enhanced oil recovery in liquid-rich shale reservoirs:Laboratory to field[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(1):137-159. doi:10.2118/175034-PA [19] 胡永乐,郝明强,陈国利,等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019,46(4):716-726. doi:10.11698/PED.2019.04.10 HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technology and practice of CO2 flooding and storage in China[J]. Petroleum Exploration and Development, 2019, 46(4):716-726. doi:10.11698/PED.2019.04.10 [20] HAWTHORNE S B, GORECKI C D, SORENSEN J A, et al. In hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO[C]. SPE 167200-MS, 2013. doi:10.2118/167200-MS [21] BILLEMONT P, COSNE B, WEIRELD G. Adsorption of carbon dio-xide, methane, and their mixtures in porous carbons:Effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013, 29(10):3328-3338. doi:10.1021/la3048938 [22] LAN Y, YANG Z, WANG P, et al. A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding[J]. Fuel, 2019, 238:412-424. doi:10.1016/j.fuel.2018.10.130 [23] ARGILLIER J F, COUSTET C, HENAUT I. Heavy oil rheology as a function of asphaltene and resin content and temperature[C]. SPE 79496-MS, SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, 4-7 November, Calgary, Alberta, Canada, 2002. doi:10.2118/79496-MS [24] JIN L, SORENSEN J, HAWTHORNE S, et al. In improving oil transportability using CO2 in the Bakken system:A laboratorial investigation[C]. Proceedings of the SPE International Conference & E-xhibition on Formation Damage Control, Lafayette, LA, SPE 178948-MS, 2016. doi:10.2118/178948-MS [25] WANG Haitao, LUN Zengmin, LÜ Cchangyuan, et al. Nuclear-magnetic-resonance study on oil mobilization in shale exposed to CO2[C]. SPE 190185-PA, 2019. doi:10.2118/190185-PA [26] SHEN Z, SHENG J J. Experimental and numerical study of permeability reduction caused by asphaltene precipitation and deposition during CO2 huff and puff injection in Eagle Ford shale[J]. Fuel, 2018, 211:432-445. doi:10.1016/j.fuel.2017.09.047 [27] TODD H B, EVANS J G. In Improved oil recovery IOR pilot projects in the Bakken Formation[C]. SPE 180270-MS, 2016. doi:10.2118/180270-MS [28] 魏兵,宋涛,赵金洲,等. 溶解气回注提高致密油藏采收率效果及敏感性[J]. 西南石油大学学报(自然科学版), 2019,41(5):85-95. doi:10.11885/j.issn.1674-5086.2019.07.06.01 WEI Bing, SONG Tao, ZHAO Jinzhou, et al. Improving the recovery efficiency andsensitivity of tight oil reservoirs by dissolved gas reinjection[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(5):85-95. doi:10.11885/j.issn.1674-5086.2019.07.06.01 [29] HOFFMAN B T. In comparison of various gases for enhanced recovery from shale oil reservoirs[C]. SPE 154329-MS, 2012. doi:10.2118/154329-MS [30] HOFFMAN B T, REICHHARDT D. In quantitative evaluation of recovery mechanisms for huff-n-puff gas injection in unconventional reservoirs[C]. Denver, Colorado:The 7th Unconventional Resources Technology Conference, 2019. doi:10.15530/urtec2019-147, 4700-4714 [31] THAKUR G. Enhanced recovery technologies for unconventional oil reservoirs[J]. Journal of Petroleum Technology, 2019, 71(9):66-69. doi:10.2118/09190066-JPT [32] CARPENTER C. Huff-n-puff gas-injection pilot improves oil recovery in the Eagle Ford[J]. Journal of Petroleum Technology, 2018, 70(11):91-92. doi:10.2118/11180091-JPT [33] HOFFMAN B T. In huff-n-puff gas injection pilot projects in the Eagle Ford[C]. SPE 189816-MS, 2018. doi:10.2118/189816-MS [34] YU Y, SHENG J J. In An experimental investigation of the effect ofpressure depletion rate on oil recovery from shale cores by cyclic N2 injection[C]. San Antonio, Texas:Unconventional Resources Technology Conference, 2015. doi:10.15530/urtec2015-2144010 [35] ZHANG Y, SAYRGH S, HUANG S, et al. In laboratory investigation of enhanced light-oil recovery by CO/flue gas huff-n-puff process[C]. Canadian International Petroleum Conference, Petroleum Society of Canada, 2004. doi:10.2118/06-02-01 [36] 廖广志,王强,王红庄,等. 化学驱开发现状与前景展望[J]. 石油学报,2017,38(2):196-207. doi:10.7623/syxb201702007 LIAO Guangzhi, WANG Qiang, WANG Hongzhuang, et al. Chemical flooding development status and prospect[J]. Acta Petrolei Sinica, 2017, 38(2):196-207. doi:10.7623/syxb201702007 [37] 叶仲斌. 提高采收率原理[M]. 北京:石油工业出版社,2000. YE Zhongbin. Principle of enhanced recovery[M]. Bei jing:Petroleum Industry Press, 2000. [38] 冯海顺. 低渗油藏基于阴-非双子表面活性剂的复配驱油体系研究[D]. 北京:中国石油大学(北京),2018. doi:10.27643/d.cnki.gsybu.2018.000029 FENG Haishun. Study on combined floding system based on anionnonionic gemini surfactants in low permeability reservoirs[D]. Beijing:China University of Petroleum, 2018. doi:10.27643/d.cnki.gsybu.2018.000029 [39] ALVAREZ J O, TOVAR F D, SCHECHTER D S. Improving oil recovery in the wolfcamp reservoir by soaking/flowback production schedule with surfactant additives[C]. SPE 187483-PA, 2018. doi:10.2118/187483-PA [40] 胡钦红,刘惠民,黎茂稳,等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报,2018,39(3):278-289. doi:10.7623/syxb201803003 HU Qinhong, LIU Huimin, LI Maowen, et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3):278-289. doi:10.7623/syxb201803003 [41] ALVAREZ J O, SAPUTRA I, SCHECHTER D S. The impact of surfactant imbibition and adsorption for improving oilrecovery in the Wolfcamp and Eagle Ford Reservoirs[J]. SPE Journal, 2018, 23(6):2103-2117. doi:10.2118/187176-PA [42] BUI K, AKKUTLU I Y, ZELENEV A S, et al. Microemulsion effects on oil recovery from kerogen using molecular-dynamics simulation[C]. SPE 191719-PA, 2019. doi:10.2118/191719-PA [43] XU L, HE K, NGUYEN C. Insights into surfactant containing fracturing fluids inducing microcracks and spontaneously imbibing in shale rocks[C]. SPE 175959-MS, 2015. doi:10.2118/175959-MS [44] KIM T S, KONNO T, DAUSKARDT R H. Surfactant-controlled damage evolution during chemical mechanical planarization of nanoporous films[J]. Acta Materialia, 2009, 57(16):4687-4696. doi:10.2118/175959-MS [45] MORROW N, BUCKLEY J. Improved oil recovery by low salinity waterflooding[J]. Journal of Petroleum Technology, 2011, 63(5):106-112. doi:10.2118/129421JPT [46] 吴剑,常毓文,李嘉,等. 低矿化度水驱技术增产机理与适用条件[J]. 西南石油大学学报(自然科学版),2015,37(5):145-151. doi:10.11885/j.issn.1674-5086.2013.11.04.06 WU Jian, CHANG Yuwen, LI Jia, et al. Mechanism of low salinity waterflooding enhanced oil recovery and its application[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5):145-151. doi:10.11885/j.issn.1674-5086.2013.11.04.06 [47] BARTELS W B, MAHANI H, BERG S, et al. Literature review of low salinity waterflooding from a length and time scale perspective[J]. Fuel, 2019, 236:338-353. doi:10.1016/j.fuel.2018.09.018 [48] SHENG J J. Critical review of low-salinity waterflooding[J]. Journal of Petroleum Science and Engineering, 2014, 120:216-224. doi:10.1016/j.petrol.2014.05.026 [49] MCGUIRE P L, CHATHAM J R, PASKVAN F K, et al. Low salinity oil recovery:An exciting new EOR opportunity for Alaska's North Slope[C]. SPE 93903-MS, 2005. doi:10.2118/93903-MS [50] YOUSEF A A, SALEH S, JAWFI M S. Improved/enhanced oil recovery from carbonate reservoirs by truning injection water salinity and ionic content[C]. SPE 154076-MS, 2012. doi:10.2118/154076-MS [51] ABDULLA F, HASHEM H S, ABDULRAHEEM B, et al. First eortrial using low salinity water injection in the Greater Burgan Field, Kuwait[C]. SPE 164341-MS, 2013. doi:10.2118/164341-MS [52] TEKLU T W, LI X P, ZHOU Z, et al. Low-salinity water and surfa-ctants for hydraulic fracturing and EOR of shales[J]. Journal of Petroleum Science and Engineering, 2018, 162:367-377. doi:10.1016/j.petrol.2017.12.057 [53] 李宾飞,李兆敏,吕其超,等. 泡沫在裂缝中流动特征的物理模拟[J]. 中南大学学报(自然科学版),2017,48(9):2465-2473. doi:10.11817/j.issn.1672-7207.2017.09.027 LI Binfei, LI Zhaomin, LÜ Qichao, et al. Physical simulation on flowing characteristics of foam in fracture[J]. Journal of Central South University (Science and Technology), 2017, 48(9):2465-2473. doi:10.11817/j.issn.1672-7207.2017.09.027 [54] FARZANEH S A, SOHRABI M. A review of the status of foam application in enhanced oil recovery[C]. SPE 164917-MS, 2013. doi:10.2118/164917-MS [55] BUCHGRABER M, CATANIER L M, KOVSCEK A R. Micro-visual investigation of foam flow in ideal fractures:Role of fracture aperture and surface roughness[C]. SPE 159430-MS, 2012. doi:10.2118/159430-MS [56] AROONSRI A, WORTHEN A J, HARIZ T, et al. Conditions for generating nanoparticle stabilized CO2 foams in fracture and matrix flow[C]. SPE 166319-MS, 2013. doi:10.2118/166319-MS [57] FERNOO M A, GAUTEPLASS J, PANCHAROEN M, et al. Experimental study of foam generation, sweep efficiency and flow in a fracture network[C]. SPE 170840-MS, 2014. doi:10.2118/170840-MS [58] KATIYAR A, PATIL P, ROHILLA N, et al. Industry-first hydrocarb-on foam eor pilot in an unconventional reservoir:Design, implementation, and performance analysis[C]. Denver, Colorado:In SPE/AAPG/SEG Unconventional Resources Technology Conference, 2019. doi:10.15530/urtec2019-103 [59] SIE C Y, NGUYEN Q. Non aqueous foam for improving hydrocarbon miscible flooding in water sensitive tight oil formations[C]. SPE 196162-MS, 2019. doi:10.2118/196162-MS [60] LI Y B, CHEN Y F, PU W F, et al. The kinetic analysis of oxidized oil during the high pressure air injection by thermal kinetic analysis[J]. Petroleum Science and Technology, 2015:319-326. doi:10.1080/10916466.2014.95-9132 [61] GILLHAM T, CERVENY B, TUREK E, et al. In keys to increasing production via air injection in Gulf Coast light oil reservoirs[C]. SPE 38848-MS, 1997. doi:10.2118/38848-MS [62] GREAVES M, REN S R, RATHBONE R R. Air injection technique (LTO Process) for IOR from light oil reservoirs oxidation rate and displacement studies[C]. SPE 0199-0046-JPT, 1998. doi:10.2118/01990046-JPT [63] LEE K J, MORIDIS G J, EHLIG-ECONOMIDES C A. A comprehensive simulation model of kerogen pyrolysis for the insitu upgrading of oil shales[J]. SPE Journal, 2016, 21(5):1612-1630. doi:10.2118/173299-PA [64] BURWELL E L, STERNERR T E, CARPENTER H C. Shale oil recovery by in-situ retorting:A pilot study[J]. Journal of Petroleum Technology, 1970, 22(12):1520-1524. doi:10.2118/2915-PA [65] ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[C]. Colorado:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2013. doi:10.1190/urtec2013-153 [66] HENAUT I, BARRE L, ARGILLIER J F, et al. Rheological and structural properties of heavy crude oils in relation with their asphaltenes content[C]. SPE 65020-MS, 2001. doi:10.2118/65020-MS [67] WONG R C K, CHAU K T. Propagation of in situ horizontal fractures in shale due to steam injection[C]. Calgary, Alberta:In Canadian International Petroleum Conference Petroleum Society of Canada, 2002. doi:10.2118/0401-04 [68] REIS J C. Oil recovery mechanisms in fractured reservoirs during steam injection[C]. SPE 20204-MS, 1990. doi:10.2118/20204-MS [69] ROSS T S, RAHNEMA H, NWACHUKWU C, et al. Steam injection in tight oil reservoir[C]. SPE 190289-MS, 2018. doi:10.2118/190289-MS [70] AL-SAEDI H N, AL-BAZZAZ W, FLORI R E. Is steam flooding a form of low salinity water flooding?[C]. SPE 194820-MS, 2019. doi:10.2118/194820-MS [71] MOHANTY K K, TONG S, MILLER C, et al. Improved hydrocarbon recovery using mixtures of energizing chemicals in unconventional reservoirs[C]. SPE 187240-MS, 2017. doi:10.2118/187240-MS [72] ARGUELLES-VIVAS F J, WANG M, ABEYKOON G A, et al. Enhancement of water imbibition in shales by use of Ketone Solvent[C]. SPE 199322-MS, 2020. doi:10.2118/199322-MS [73] WANG M, BAEK K H, ABEYKOON G A, et al. Oxygenated solvent as a novel additive for improved oil recovery in tight oil reservoirs[C]. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers:Calgary, Alberta, Canada, 2019, 16. SPE 195871-MS, 2019. 10.2118/195871-MS [74] LIU He, JIN Xu, DING Bin. Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6):1107-1115. doi:10.1016/S18763804(16)30129-X [75] 刘珑,范洪富,孙江河,等. 纳米颗粒稳定泡沫驱油研究进展[J]. 油田化学,2019,36(4):748-754. doi:10.19346/j.cnki.10004092.2019.04.034 LIU Long, FAN Hongfu, SUN Jianghe, et al. Research progress of nanoparticles stabilized foam for EOR[J]. Oilfield Chemistry, 2019, 36(4):748-754. doi:10.19346/j.cnki.10004092.2019.04.034 [76] WEI Bing, LI Hao, LI Qinzhi, et al. Stabilization of foam lamella using novel surface grafted nano-cellulose based nano-fluids[J]. Langmuir, 2017, 33(21):5127-5139. doi:10.1021/acs.langmuir.7b00387 [77] WILSON A. Non-modified silica nanoparticles decrease water invasion into Atoka shale[J]. SPE-0213-0141-JPT, 2013. doi:10.2118/0213-0141-JPT [78] SINGH R, TONG S, PANTHI K, et al. Stimulation of calcite-rich shales using nanoparticle-microencapsulated acids[J]. SPE Journal, 2019, 24(6):2671-2680. doi:10.2118/195695-PA |
[1] | 何金钢, 袁琳. 聚驱后聚表剂“调驱堵压”调整技术研究[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 165-174. |
[2] | 魏兵, 刘江, 张翔, 蒲万芬. 致密油藏提高采收率方法与理论研究进展[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 91-102. |
[3] | 叶义平, 钱根葆, 徐有杰, 高阳, 覃建华. 页岩油压裂水平井变导流能力试井模型研究[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 111-119. |
[4] | 闵超, 代博仁, 张馨慧, 杜建平. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 1-15. |
[5] | 杨丽娟, 张明迪, 王本成, 温善志, 刘远洋. 基于数值模拟的生物礁气藏地层水分布研究[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 118-126. |
[6] | 于学亮, 胥云, 翁定为, 蒋豪, 段瑶瑶. 页岩油藏“密切割”体积改造产能影响因素分析[J]. 西南石油大学学报(自然科学版), 2020, 42(3): 132-143. |
[7] | 周建, 宋延杰, 姜艳娇, 孙钦帅, 靖彦卿. 海洋天然气水合物测井评价研究进展[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 85-93. |
[8] | 张德平, 马锋, 吴雨乐, 董泽华. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103-109. |
[9] | 李永太, 孔柏岭. 提高三元复合驱现场应用效果的技术途径[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 113-119. |
[10] | 梁萌, 袁海云, 杨英, 杨云博, 蔺江涛. 气体混相驱与最小混相压力测定研究进展[J]. 西南石油大学学报(自然科学版), 2017, 39(5): 101-112. |
[11] | 苏伟, 侯吉瑞, 刘娟, 朱道义, 席园园. 缝洞型碳酸盐岩油藏注气吞吐EOR效果评价[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 133-139. |
[12] | 郭日鑫*. 热自生CO2 吞吐中技术研究及其应用[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 139-144. |
[13] | 刘祖鹏1 *,李兆敏2. CO2 驱油泡沫防气窜技术实验研究[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 117-122. |
[14] | 刘永辉1 *,罗程程1,张烈辉1,王峰2,辛涛云2. 分层注CO2 井系统模型研究[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 123-127. |
[15] | 吴剑1,2 *,常毓文1,李嘉1,梁涛1,郭晓飞1. 低矿化度水驱技术增产机理与适用条件[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 145-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||