[1] 张红凤. 对油田井控技术的探索[J]. 中国新技术新产品,2012(7):127. doi:10.13612/j.cnki.cntp.2012.07.020 ZHANG Hongfeng. Exploration of well control technology in oilfield[J]. New Technologies and New Products in China, 2012(7):127. doi:10.13612/j.cnki.cntp.2012.07.020 [2] 李梦刚,万长根,白彬珍. 随钻压力测量技术现状及应用前景[J]. 断块油气田,2008,15(6):123-126. LI Menggang, WAN Changgen, BAI Binzhen. Present situation and application prospect of pressure measurement while drilling[J]. Fault Block Oil and Gas Field, 2008, 15(6):123-126. [3] 梁海波,李欣嵘,王玉,等. 基于神经网络的井底压力模型修正技术应用[J]. 自动化与仪表,2012,27(11):9-11. dio:10.19557/j.cnki.1001-9944.2012.11.003 LIANG Haibo, LI Xinrong, WANG Yu, et al. Application of neural network-based bottom-hole pressure model revision technology[J]. Automation and Instruments, 2012, 27(11):9-11. dio:10.19557/j.cnki.1001-9944.2012.11.003 [4] 许珍萍,江乾锋,刘会会,等. 数值分析法在求解产水气井井底流压的应用[J]. 石油化工应用,2016,35(6):80-83. doi:10.3969/j.issn.16735285.2016.06.020 XU Zhenping, JIANG Qianfeng, LIU Huihui, et al. Application of numerical analysis method in solving bottom hole flowing pressure of water-producing gas wells[J]. Petrochemical Industry Application, 2016, 35(6):80-83. doi:10.3969/j.issn.16735285.2016.06.020 [5] 韩雄,何峰,王超. 酸化期间基于BP神经网络法的井底压力计算[J]. 天然气勘探与开发,2018,41(1):74-78. doi:10.12055/gaskk.issn.16733177.2018.01.012 HAN Xiong, HE Feng, WANG Chao. Calculation of bottomhole pressure during acidizing based on BP neural network method[J]. Natural Gas Exploration and Development, 2018, 41(1):74-78. doi:10.12055/gaskk.issn.16733177.2018.01.012 [6] 卢献健,刘海锋,蒋园园,等. 基于灰色遗传BP神经网络的大坝变形预测[J]. 桂林理工大学学报,2017,37(4):647-652. doi:10.3969/j.issn.1674-9057.2017.04. 015 LU Xianjian, LIU Haifeng, JIANG Yuanyuan, et al. Dam deformation prediction based on grey genetic BP neural network[J]. Journal of Guilin University of Technology, 2017, 37(4):647-652. doi:10.3969/j.issn.1674-9057.2017.04.015 [7] 韩家炜, MICHELINE K. 数据挖掘概念与技术[M]. 北京:机械工业出版社, 2001. HAN Jiawei, MICHELINE K. Data mining concept and technology[M]. Beijing:Machinery Industry Press, 2001. [8] 毛国君,段立娟. 数据挖掘原理与算法[M]. 北京:清华大学出版社,2011. MAO Guojun, DUAN Lijuan. Principles and algorithms of data mining[M]. Beijing:Tsinghua University Press, 2011. [9] 黄文秀,唐超尘,神显豪,等. 改进的k最邻近算法在海量数据挖掘中的应用[J]. 济南大学学报(自然科学版),2021,35(1):24-28. doi:10.13349/j.cnki.jdxbn.20200817.001 HUANG Wenxiu, TANG Chaochen, SHEN Xianhao, et al. Application of improved k-nearest neighbor algorithm in massive data mining[J]. Journal of University of Jinan (Science and Technology), 2021, 35(1):24-28. doi:10.13349/j.cnki.jdxbn.20200817.001 [10] PELIKAN M, SASTRY K, GOLDBERG D E. Scalability of the Bayesian optimization algorithm[J]. International Journal of Approximate Reasoning, 2002, 31(3):221-258. doi:10.1016/S0888-613X(02)00095-6 [11] CHEN M S, HAN J, YU P S. Data mining:An overview from a database perspective[J]. IEEE Transactions on Knowledge & Data Engineering, 1996, 8(6):866-883. doi:10.1109/69.553155 [12] 倪超武,许明标,陈斌. 钻井液水力学软件的编制与应用[J]. 长江大学学报(自科版),2009,6(4):186-188. doi:10.16772/j.cnki.16731409.2009.04.022 NI Chaowu, XU Mingbiao, CHEN Bin. Development and application of drilling fluid hydraulics software[J]. Journal of Changjiang University (Natural Science Edition), 2009, 6(4):186-188. doi:10.16772/j.cnki.16731409.2009.04.022 [13] 孙在. 随钻压力测量技术的研究与应用[J]. 中国科技信息,2011(19):81-82. doi:10.3969/j.issn.10018972.2011.19.033 SUN Zai. Research and application of pressure measurement while drilling technology[J]. Science and Technology Information in China, 2011(19):81-82. doi:10.3969/j.issn.10018972.2011.19.033 [14] 包富鹏,高瑞香,李三国. 随钻地层压力监测系统及其应用[J]. 内蒙古石油化工, 2010,36(15):33-35. doi:10.3969/j.issn.1006-7981.2010.15.010 BAO Fupeng, GAO Ruixiang, LI Sanguo. Pressure-monitoring system of drill ground and its application[J]. Inner Mongulia Petrochemical Industry, 2010, 36(15):33-35. doi:10.3969/j.issn.1006-7981.2010.15.010 [15] 马志勇,候满峰. 小井眼钻井水力学设计理论与应用研究[J]. 化工管理,2015(14):89. doi:10.3969/j.issn.1008-4800.2015.14.072 MA Zhiyong, HOU Manfeng. Study on hydraulic design theory and application of slim hole drilling[J]. Chemical Enterprise Management, 2015(14):89. doi:10.3969/j.issn.1008-4800.2015.14.072 [16] 毕春光,陈桂芬. 基于数据挖掘的贝叶斯算法应用研究[J]. 农业网络信息,2010(3):19-22. doi:10.3969/j.issn.1672-6251.2010.03.004 BI Chunguang, CHEN Guifen. Study on the naive bayes algorithm application based on data mining[J]. Agricultural Network Information, 2010(3):19-22. doi:10.3969/j.issn.1672-6251.2010.03.004 [17] 裴向杰,唐红昇,陈鹏. 一种改进的贝叶斯算法在短信过滤中的研究[J]. 计算机技术与发展,2015,25(9):89-93. doi:10.3969/j.issn.1673629X.2015.09.019 PEI Xiangjie, TANG Hongsheng, CHEN Peng. Research on optimized Naive Bayesian algorithm in SMS spam filtering[J]. Computer Technology and Development, 2015, 25(9):89-93. doi:10.3969/j.issn.1673629X.2015.09.019 [18] TAHERI S, YEARWOOD J, MAMMADOV M, et al. Attribute weighted Naive Bayes classifier using a local optimization[J]. Neural Computing & Applications, 2014, 24(5):995-1002. [19] 秦怀强. 朴素贝叶斯分类算法浅析[J]. 福建质量管理,2017(17):235. QIN Huaiqiang. Analysis of Naive Bayesian classification algorithms[J]. Fujian Quality Management, 2017(17):235. [20] 赵文涛,孟令军,赵好好,等. 朴素贝叶斯算法的改进与应用[J]. 测控技术,2016, 35(2):143-147. doi:10.3969/j.issn.10008829.2016.02.036 ZHAO Wentao, MENG Lingjun, ZHAO Haohao, et al. Improvement and application of Naive Bayesian algo-rithms[J]. Measurement & Control Technology, 2016, 35(2):143-147. doi:10.3969/j.issn.1000-8829.2016.02. 036 [21] HARTIGAN J A, WONG M A. Algorithm AS 136:A K-means clustering algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1):100-108. [22] 程国建,赵倩倩. K-means聚类算法在Spark平台上的应用[J]. 软件导刊,2016,15(2):146-148. doi:10.11907/rjdk.1511517 CHENG Guojian, ZHAO Qianqian. Application of K-means clustering algorithms on spark platform[J]. Software Guide, 2016, 15(2):146-148. doi:10.11907/rjdk.1511517 [23] 王实,高文. 数据挖掘中的聚类方法[J]. 计算机科学,2000,27(4):42-45. doi:10.3969/j.issn.1002137X. 2000.04.012 WANG Shi, GAO Wen. Clustering method in data mining[J]. Computer Science, 2000, 27(4):42-45. doi:10.3969/j.issn.1002-137X.2000.04.012 [24] 王凡. 基于众包的数据库信息查询处理方法[J]. 电脑知识与技术,2016,12(16):25-27. doi:10.14004/j.cnki.ckt.2016.2787 WANG Fan. Database information query processing method based on the crowdsourcing[J]. Computer Know-ledge and Technology, 2016, 12(16):25-27. doi:10. 14004/j.cnki.ckt.2016.2787 [25] 黄韬,刘胜辉,谭艳娜. 基于K-means聚类算法的研究[J]. 计算机技术与发展,2011,21(7):54-57. doi:10.3969/j.issn.1673629X.2011.07.015 HUANG Tao, LIU Shenghui, TAN Yanna. Research on K-means clustering algorithm[J]. Computer Technology and Development, 2011, 21(7):54-57. doi:10.3969/j.issn.1673629X.2011.07.015 [26] 蔡瑞瑞. 改进K-means算法下大数据精准挖掘[J]. 新乡学院学报, 2021,38(3):27-31. CAI Ruirui. The use of improved K-means algorithm into accurate big data mining[J]. Journal of Xinxiang University, 2021, 38(3):27-31. [27] 刘宇航,马慧芳,刘海姣,等. 一种可重叠子空间K-Means聚类算法[J]. 计算机工程,2020,46(8):58-63,71. doi:10.19678/j.issn.1000-3428.0054555 LIU Yuhang, MA Huifang, LIU Haijiao. et al. An overlapping subspace K-means clustering algorithm[J]. Computer Engineering, 2020, 46(8):58-63, 71. doi:10.19678/j.issn.1000-3428.0054555 [28] 张宇亭. K-means的应用混合数据算法[J]. 现代计算机,2020(13):22-25. doi:10.3969/j.issn.1007-1423.2020.13.004 ZHANG Yuting. Mixed data algorithm based on K-means[J]. Modern Computer, 2020(13):22-25. doi:10. 3969/j.issn.1007-1423.2020.13.004 |