[1] 高云,付世晓,杨家栋,等. 细长柔性立管涡激振动疲劳损伤分析[J]. 上海交通大学学报,2016,50(8):1270-1277. doi:10.16183/j.cnki.jsjtu.2016.08.021 GAO Yun, FU Shixiao, YANG Jiadong, et al. Fatigue damage analysis of vortex-induced vibration of a long flexible riser[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8):1270-1277. doi:10.16183/j.cnki.jsjtu.2016.08.021 [2] 骆正山,车朝阳. 基于TVR的腐蚀油气管道失效概率及安全寿命研究[J]. 中国安全生产科学技术,2018,14(9):95-99. doi:10.11731/j.issn.1673-193x.2018.09.015 LUO Zhengshan, CHE Chaoyang. Research on failure probability and safe life of corroded oil and gas pipelines based on TVR[J]. Journal of Safety Science and Technology, 2018, 14(9):95-99. doi:10.11731/j.issn.1673193x.2018.09.015 [3] BISHOP R E D, HASSAN A Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid[J]. The Royal Society, 1964, 277:51-75. [4] HARTLEN R T, CURRIE I G. Lift oscillator model of vortex-induced vibration[J]. Journal of Engineering Mechanics Division, 1972, 98(1):577-591. doi:10.1061/JMCEA3.0001562 [5] SKOP R A, GRIFFIN O M. A model for the vortex-excited resonant response of bluff cylinders[J]. Journal of Sound and Vibration, 1973, 27(2):225-233. [6] IWAN W D. The vortex-induced oscillation of non-uniform structural systems[J]. Journal of Sound and Vibration, 1981, 79(2):291-301. [7] LANDL R. A mathematical model for vortex-excited vibrations of bluff bodies[J]. Journal of Sound and Vibration, 1975, 42(2):219-234. [8] SKOP R A, BALASUBRAMANIAN S. A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures, 1997, 11(4):395-412. [9] KRENK S, NIELSEN S R K. Energy balanced double oscillator model vortex-induced vibrations[J]. Journal of Engineering Mechanics, 1999, 125(3):263-271. [10] FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19:123-140. doi:10.1016/j.jfluidstructs.2003.12.004 [11] OGINK R H M, METRIKINE A V. A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration[J]. Journal of Sound and Vibration, 2010, 329(26):5452-5473. doi:10.1016/j.jsv.2010.07.008 [12] FARSHIDIANGAR A, ZANGANEH H. A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio[J]. Journal of Fluids and Structures, 2010, 26(3):430-441. doi:10.1016/j.jfluidstructs.2009.11.005 [13] SRINIL N, ZANGANEH H. Modelling of coupled cross-flow/in-line vortex-induced vibrations using double duffing and van der pol oscillators[J]. Ocean Engineering, 2012, 53:83-97. doi:10.1016/j.oceaneng.2012.06.025 [14] JIN Yiming, DONG Ping. A novel wake oscillator model for simulation of cross-flow vortex induced vibrations of a circular cylinder close to a plane boundary[J]. Ocean Engineering, 2016, 117:57-62. doi:10.1016/j.oceaneng.2016.03.057 [15] MATHELIN L, LANGRE E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model[J]. European Journal of Mechanics B/Fluids, 2005, 24:478-490. doi:10.1016/j.euromechflu.2004.12.005 [16] VIOLETTE R, LANGRE E, SZYDLOWSKI J. Computation of vortex-induced vibrations of long structures using a wake oscillator model:Comparison with DNS and experiments[J]. Computers and Structures, 2007, 85:1134-1141. doi:10.1016/j.compstruc.2006.08.005 [17] GAO Yun, ZONG Zhi, ZOU Li, et al. Vortex-induced vibrations and waves of along circular cylinder predicted using a wake oscillator model[J]. Ocean Engineering, 2018, 156:294-305. doi:10.1016/j.oceaneng.2018.03.034 [18] MENG Dan, CHEN Liang. Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser[J]. Applied Ocean Research, 2012, 34:52-67. doi:10.1016/j.apor.2011.10.002 [19] VICKERY B J, WATKINS R D. Flow-induced vibration of cylindrical structures[C]. Perth:Proceedings of the First Australian Conference, University of Western Australia, 1962. [20] KING R. Vortex excited oscillations of yawed circular cylinders[J]. Journal of Fluids Engineering, 1977, 99:495-501. [21] GRIFFIN O M. Vortex-excited cross-flow vibrations of a single cylindrical tube[J]. Transactions of the ASME, 1980, 102:158-166. [22] VANDIVER J K, JAISWAL V, JHINGRAN V. Insights on vortex-induced, travelling waves on long risers[J]. Journal of Fluids and Structures, 2009, 25:641-653. doi:10.1016/j.jfluidstructs.2008.11.005 [23] LIE H, KAASEN K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of Fluids and Structures, 2006, 22:557-575. doi:10.1016/j.jfluidstructs.2006.01.002 [24] SONG Jining, LU Lin, TENG Bin, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow[J]. Ocean Engineering, 2011, 38:1308-1322. doi:10.1016/j.oceaneng.2011.05.020 [25] 万德成,端木玉. 深海细长柔性立管涡激振动数值分析方法研究进展[J]. 力学季刊,2017,38(2):179-196. doi:10.15959/j.cnki.0254-0053.2017.02.001 WAN Decheng, DUAN Muyu. A recent review of numerical studies on vortex-induced vibrations of long slender flexible risers in deep sea[J]. Chinese Quarterly of Mechanics, 2017, 38(2):179-196. doi:10.15959/j.cnki.0254-0053.2017.02.001 [26] BOURGUET R, GEORGE E K, MICHAEL S T. Vortex-induced vibrations of a long flexible cylinder in shear flow[J]. Journal of Fluid Mechanics, 2011, 667:342-382. doi:10.1017/jfm.2011.90 [27] QU Yang, METRIKINE A V. Modelling of coupled cross-flow and in-line vortex-induced vibrations of flexible cylindrical structures. Part II:On the importance of in-line coupling[J]. Nonlinear Dynamics, 2020, 103:3083-3112. doi:10.1007/s11071-020-06027-1 [28] NEWMAN D J, KARNIADAKIS G E. A direct numerical simulation study of flow past a freely vibrating cable[J]. Journal of Fluid Mechanics, 1997, 344:95-136. [29] XU Hongxiang, TANG Wenyong, QU Xue. Prediction and analysis of fatigue damage due to cross-flow and in-line VIV for marine risers in non-uniform current[J]. Ocean Engineering, 2014, 83(2):52-62. doi:10.1016/j.oceaneng.2014.03.023 |