西南石油大学学报(自然科学版) ›› 2024, Vol. 46 ›› Issue (1): 64-75.DOI: 10.11885/j.issn.1674-5086.2022.06.13.02
刘锐1,2, 陈泽洲2, 高石3, 蒲万芬1,2,4, 杜代军2
收稿日期:
2022-06-13
发布日期:
2024-02-01
通讯作者:
刘锐,E-mail:breakthroughliu@163.com
作者简介:
刘锐,1987年生,男,汉族,四川蓬溪人,研究员,博士研究生导师,主要从事提高采收率、二氧化碳压、驱、埋、油气绿色高效转化与利用研究。E-mail:breakthroughliu@163.com;陈泽洲,1998年生,男,回族,四川宜宾人,硕士研究生,主要从事纳米驱提高采收率模拟及技术研究。E-mail:swpu_czz@163.com;高石,1996年生,男,汉族,辽宁庄河人,助理工程师,硕士,主要从事油气集输与处理工艺规划研究。E-mail:1224540287@qq.com;蒲万芬,1961年生,女,汉族,四川南充人,教授,博士研究生导师,主要从事提高采收率、CCUS、油气藏原位制氢、储氢研究。E-mail:pwf58@163.com;杜代军,1991年生,男,汉族,四川射洪人,博士,主要从事化学驱提高采收率理论及技术方面的研究。E-mail:axiaodu1991@163.com
基金资助:
LIU Rui1,2, CHEN Zezhou2, GAO Shi3, PU Wanfen1,2,4, DU Daijun2
Received:
2022-06-13
Published:
2024-02-01
摘要: 赋能纳米碳由于高横纵比和两亲化结构,体现出表面活性剂、分子薄膜、胶体、液晶分子和聚合物的多面特性,在纳米化学提高原油采收率领域独具优势和应用潜力。调研总结了一维碳纳米管、二维石墨烯等纳米碳结构和性质的共性与特性,全面归纳了纳米碳的起源、制备方法与赋能路径;提出了油藏高温、高矿化度条件纳米碳的精细调控赋能策略,剖析了赋能纳米碳在水-油和水-岩石界面吸附和组装机制,多维度精细表征手段及信息化物理模拟方法。以水驱油藏波及系数和波及区内驱油效率均低的普遍性问题为导向,基于纳米的分子—粒子跨尺度特征和水-油-岩界面效应提炼了赋能纳米碳大幅扩大波及系数和提高驱油效率的协同耦合机制。最后,提出了赋能纳米碳提高原油采收率规模应用存在的问题和低碳、高效的发展路径。
中图分类号:
刘锐, 陈泽洲, 高石, 蒲万芬, 杜代军. 赋能纳米碳提高原油采收率研究进展[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 64-75.
LIU Rui, CHEN Zezhou, GAO Shi, PU Wanfen, DU Daijun. Research Progress on Functionalization Nanocarbons for Enhanced Oil Recovery[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 64-75.
[1] WANG Jianliang, FENG Liangyong, STEVE M, et al. China's unconventional oil: A review of its resources and outlook for long-term production[J]. Energy, 2015, 82: 31–42. doi: 10.1016/j.energy.2014.12.042 [2] 周亚洲,王德民,王志鹏,等. 多孔介质中孔喉级别乳状液的形成条件及黏弹性[J]. 石油勘探与开发, 2017, 44(1):110-116. doi:10.11698/PED.2017.01.13 ZHOU Yazhou, WANG Demin, WANG Zhipeng, et al. The formation and viscoelasticity of pore-throat scale emulsion in porous media[J]. Petroleum Exploration and Development, 2017, 44(1): 110–116. doi: 10.11698/PED.2017.01.13 [3] SUN Jinsheng, DU Weichao, PU Xiaolin, et al. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery[J]. Chemical Papers, 2015, 69(12): 1598–1607. doi: 10.1515/chempap-2015-0185 [4] FAN Haiming, ZHENG Tong, CHEN Haolin, et al. Viscoelastic surfactants with high salt tolerance, fast-dissolving property, and ultralow interfacial tension for chemical flooding in offshore oilfields[J]. Journal of Surfactants and Detergents, 2018, 21(4): 475–488. doi: 10.1002/jsde.12042 [5] 丁彬,熊春明,耿向飞,等. 致密油纳米流体增渗驱油体系特征及提高采收率机理[J]. 石油勘探与开发, 2020, 47(4):756-764. doi: 10.11698/PED.2020.04.12 DING Bin, XIONG Chunming, GENG Xiangfei, et al. Characteristics and EOR mechanisms of nanofluids permeation flooding for tight oil[J]. Petroleum Exploration and Development, 2020, 47(4): 756–764. doi: doi:10.11698/PED.2020.04.12 [6] 余海棠,邓雄伟,刘艳梅,等. 致密油储层渗吸驱油用纳米流体研究[J]. 断块油气田, 2022, 29(5):604-608. doi:10.6056/dkyqt202205005 YU Haitang, DENG Xiongwei, LIU Yanmei, et al. Research of nanofluids suitable for imbibition and oil displacement in tight oil reservoirs[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 604–608. doi: 10.6056/dkyqt202205005 [7] 许康宁,丁彬,吴伟,等. 致密油藏孔隙结构对纳米流体驱油效果的影响[J]. 油田化学, 2022, 39(3):444-448, 454. doi:10.19346/j.cnki.1000-4092.2022.03.011 XU Kangning, DING Bin, WU Wei, et al. Influence of pore structure of tight reservoir on oil displacement effect of nano fluid[J]. Oilfield Chemistry, 2022, 39(3): 444–448, 454. doi: 10.19346/j.cnki.1000-4092.2022.03.011 [8] 张小军,郭继香,高晨豪,等. 纳米颗粒增强提高采收率应用进展[J]. 油田化学, 2022, 39(1):186-190. doi:10.19346/j.cnki.1000-4092.2022.01.031 ZHANG Xiaojun, GUO Jixiang, GAO Chenhao, et al. Application of nanoparticles augmented enhanced oil recovery[J]. Oilfield Chemistry, 2022, 39(1): 186–190. doi: 10.19346/j.cnki.1000-4092.2022.01.031 [9] 张磊,张贵才,蒋平,等. 纳米材料在油田开发中的应用[J]. 材料导报,2015, 29(13):72-76. doi:10.11896/j.issn.1005-023X.2015.013.013 ZHANG Lei, ZHANG Guicai, JIANG Ping, et al. Applications of nanomaterials in oilfield development[J]. Materials Reports, 2015, 29(13): 72–76. doi: 10.11896/j.issn.1005-023X.2015.013.013 [10] 朱红,夏建华,孙正贵,等. 纳米二氧化硅在三次采油中的应用研究[J]. 石油学报,2006,27(6):96-100. doi:10.3321/j.issn:0253-2697.2006.06.021 ZHU Hong, XIA Jianhua, SUN Zhenggui, et al. Application of nanometer-silicon dioxide in tertiary oil recovery[J]. Acta Petrolei Sinica, 2006, 27(6): 96–100. doi: 10.3321/j.issn:0253-2697.2006.06.021 [11] 魏兵,陈神根,赵金洲,等. 纳米纤维高稳泡沫在裂缝中的生成和运移规律[J]. 石油学报, 2020, 41(9):1135-1145. doi:10.7623/syxb202009010 WEI Bing, CHEN Shengen, ZHAO Jinzhou, et al. Formation and migration laws of nanofiber-based high-stability foam in fractures[J]. Acta Petrolei Sinica, 2020, 41(9): 1135–1145. doi: 10.7623/syxb202009010 [12] 麦西默·马卡西奥,弗朗西斯科·保卢奇. 富勒烯、石墨烯和碳纳米管制备与应用[M]. 李克训,乔妙杰,马晨, 译. 北京:国防工业出版社, 2020. MARCACCIO M, PAOLUCCI F. Making and exploiting fullerences, graphene, and carbon nanotubes[M]. LI Kexun, QIAO Miaojie, MA Chen, trans. Beijing: National Defense Industry Press, 2020. [13] 吴红军,李志达,谷笛,等. 电化学转化二氧化碳制备碳纳米材料及表征[J]. 东北石油大学学报, 2016, 40(2):85-89, 98. doi:10.3969/i.issn.2095-4107.2016.02.011 WU Hongjun, LI Zhida, GU Di, et al. Preparation and characterization of carbon nanomaterials by electrochemical conversion of carbon dioxide[J]. Journal of Northeast Petroleum University, 2016, 40(2): 85–89, 98. doi: 10.3969/i.issn.2095-4107.2016.02.011 [14] 裴海华,单景玲,曹旭,等. 纳米颗粒稳定乳状液提高原油采收率研究进展[J]. 材料导报, 2021, 35(13):13227-13231. doi:10.11896/cldb.20050023 PEI Haihua, SHAN Jingling, CAO Xu, et al. Research progresses on nanop-article stabilized emulsions for enhanced oil recovery[J]. Materials Reports, 2021, 35(13):13227–13231. doi: 10.11896/cldb.20050023 [15] CHEN Changlong, WANG Shuoshi, KADHUM M J, et al. Using carbonac-eous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study[J]. Fuel, 2018, 222: 561–568. doi: 10.1016/j.fuel.2018.03.002 [16] 吴景春,石芳,赵阳,等. 功能性纳米驱油剂研究进展[J]. 东北石油大学学报, 2020, 44(5):70-75. doi:10.3969/i.issn.2095-4107.2020.05.001 WU Jingchun, SHI Fang, ZHAO Yang, et al. Research progress of functional nano-oil displacement agents[J]. Journal of Northeast Petroleum University, 2020, 44(5): 70–75. doi: 10.3969/i.issn.2095-4107.2020.05.001 [17] ELYADERANI S M G, JAFARI A, RAZAVINEZHAD J. Experimental investing-ation of mechanisms in functionalized multiwalled carbon nanotube flooding for enhancing the recovery from heavy-oil reservoir[J]. SPE Journal, 2019, 24(6): 2681–2694. doi: 10.2118/194499-PA [18] CHATURBEDY P, MATTE H S S R, Voggu R, et al. Self-assembly of C60, SWNTs and few-layer graphene and their binary composites at the organic–aqueous interface[J]. Journal of Colloid and Interface Science, 2011, 360: 249–255. doi: 10.1016/j.jcis.2011.04.088 [19] KROTO H W, HEATH J R, O'BRIEN S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318: 162–163. doi: 10.1038/318162a0 [20] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56–58. doi: 10.1038/354056a0 [21] REICH S, THOMSEN C, MAULTZSCH J. Carbon nanotubes: Basic concepts and physical properties[M]. Wernheim: Wiley-VCH Press, 2004. doi: 10.1007/s00396-004-1180-6 [22] LIU Jie, RINZLER A G, DAI Hongjie, et al. Fullerene pipes[J]. Science, 1998, 280: 1253–1256. doi: 10.1126/science.280.5367.1253 [23] 杨全红,张辰,孔德斌. 石墨烯化学剥离和组装[M]. 北京:科学出版社, 2020. YANG Quanhong, ZHANG Chen, KONG Debin. Graphenes: Chemical exfoliation and assembly[M]. Beijing: Science Press, 2020. [24] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896 [25] AMOS M, SHINJI Y, KAZUYUKI F. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers[J]. Applied Physics Letters, 2011, 99(12): 121107. doi: 10.1063/1.3641419 [26] YI Min, SHEN Zhigang. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700–11715. doi: 10.1039/c5ta00252d [27] CIESIELSKI A, SAMORI P. Graphene via sonication assisted liquid-phase exfoliation[J]. Chemical Society Reviews, 2013, 43(1): 381–398. doi: 10.1039/c3cs60217f [28] ZHENG Jian, DI Chongan, LIU Yunqi, et al. High-quality graphene with large flakes exfoliated by oleyl amine[J]. Chemical Communications, 2010, 46(31): 5728–5730. doi: 10.1039/c0cc00954g [29] LU Jiong, YANG Jiaxiang, WANG Junzhong, et al. Onepot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8): 2367–2375. doi: 10.1021/nn900546b [30] LIU Na, LUO Fang, WU Haoxi, et al. One-step ionicliquid-assisted electrochemical synthesis of ionic-liquidfunctionalized graphene sheets directly from graphite[J]. Advanced Functional Materials, 2008, 18(10): 1518-1525. doi: 10.1002/adfm.200700797 [31] MCALLISTER M J, LI J, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 2007, 19(18): 4396–4404. doi: 10.1021/cm0630800 [32] YANG Xiaoyin, DOU Xi, ROUHANIPOUR A, et al. Two-dimensional graphene nanoribbons[J]. Journal of the American Chemical Society, 2008, 130: 4216–4217. doi: 10.1021/ja710234t [33] CHEN Zongping, REN Wencai, GAO Libo, et al. Threedimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424–428. doi: 10.1038/nmat3001 [34] ZHU Yanwu, MURALI S, CAI Weiwei. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906–3924. doi: 10.1002/adma.201001068 [35] LI Xuesong, CAI Weiwei, AN Jinho, et al. Large-area synthesis of highquality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312–1314. doi: 10.1126/science.1171245 [36] LIANG Feng, SADANA A K, PEERA A, et al. A convenient route to functionalized carbon nanotubes[J]. Nano Letters, 2004, 4(7): 1257–1260. doi: 10.1021/nl049428c [37] KRAETSCHMER W, LAMB L D. Solid C60: A new form of carbon[J]. Nature, 1990, 347(6291): 354. doi: 10.1038/347354a0 [38] YADIENKA M, GUAN Jinwen, LIN Shuqiong, et al. Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room tem-perature[J]. Chemical Communications, 2007, 48: 5146–5148. doi: 10.1039/b712299c [39] KELLY K F, BILLUPS W E. Synthesis of soluble graphite and graphene[J]. Accounts of Chemical Research, 2013, 46(1): 4–13. doi: 10.1021/ar300121q [40] LUO Dan, WANG Feng, ZHU Jingyi, et al. Secondary oil recovery using graphene-based amphiphilic Janus nanosheet fluid at an ultralow-concentration[J]. Industrial & Engineering Chemistry Research, 2017, 56: 11125-11132. doi: 10.1021/acs.iecr.7b02384 [41] 欧霄巍. 基于共价键的氧化石墨烯LBL膜的组装及其在有机场效应晶体管中的应用[D]. 北京:中国科学院大学, 2013. OU Xiaowei. The assembly of graphene oxide LBL film based on covalent bonds and its application in organic field-effect transistors[D]. Beijing: University of Chinese Academy of Sciences, 2013. [42] YIN Taiheng, YANG Zihao, LIN Meiqin, et al. Preparation of janus nanosheets via reusable cross-linked polymer microspheres template[J]. Chemical Engineering Journal, 2019, 371: 507–515. doi: 10.1016/j.cej.2019.04.093 [43] ISLAM M F, ROJAS E, BERGEY D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters, 2003, 3(2): 269–273. doi: 10.1021/nl025924u [44] MOORE V C, STRANO M S, HAROZ E H, et al. Individually suspended single-walled carbon nanotubes in various surfactants[J]. Nano Letters, 2003, 3(10): 1379-1382. doi: 10.1021/nl034524j [45] KIM J, COTE L J, HUANG Jiaxing. Two-dimensional soft material: New faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356–1364. doi: 10.1021/ar300047s [46] SHAO Jiaojing, LV Wei, YANG Quanhong. Self-assembly of graphene oxide at interfaces[J]. Advances Materials, 2014, 26(32): 5586–5612. doi: 10.1002/adma.201400267 [47] KIM J K, HAN H T, LEE S H, et al. Graphene oxide liquid crystals[J]. Angewandte Chemie International Edition, 2011, 50(13): 3043–3047. doi: 10.1002/anie.201004692 [48] ALI M F, HAMID R S. Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation[J]. Petroleum, 2020, 6(2): 115–122. doi: 10.1016/j.petlm.2019.09.003 [49] JAMES J S. Status of surfactant EOR technology[J]. Petroleum, 2015, 1(2): 97–105. doi: 10.1016/j.petlm.2015.07.003 [50] 吴伟鹏,侯吉瑞,屈鸣,等. 2-D智能纳米黑卡微观驱油机理可视化实验[J]. 油田化学, 2020, 37(1):133-137. doi:10.19346/j.cnki.10004092.2020.01.023 WU Weipeng, HOU Jirui, QU Ming, et al. Microscopic flooding mechanism experiment visualization of 2-D smart black nano-card[J]. Oilfield Chemistry, 2020, 37(1): 133–137. doi: 10.19346/j.cnki.1000-4092.2020.01.023 [51] ARAIN Z U A, AL-ANSSARI S, ALIA M, et al. Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition[J]. Petroleum, 2020, 6(3): 277–285. doi: 10.1016/j.petlm.2019.09.001 [52] 周泽南,吴一宁,刘逸飞,等. 自分散活性纳米SiO2油水界面吸附规律及其稳定的乳状液调流机制[C]. 无锡:第十七届全国胶体与界面化学学术会议, 2019. ZHOU Zenan, WU Yining, LIU Yifei, et al. Absorption of self-dispersing active nano SiO2 at oil-water interface and profile control capability of the nano particles stabilized emulsion[C]. Wuxi: The 17th National Colloid and Interface Chemistry Academic Conference, 2019. [53] HUANG Caili, FORTH J, WANG Weiyu, et al. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants[J]. Nature Nanotechnology, 2017, 12: 1060–1063. doi: 10.1038/nnano.2017.182 [54] ZHANG Tiantian, MURPHY M J, YU Haiyang, et al. Investigation of nanoparticle adsorption during transport in porous media[J]. SPE Journal, 2015, 20(4): 667–677. doi: 10.2118/166346-PA [55] ZHANG Lei, JIANG Cheng, KHAN N, et al. Efficient preparation of nano-starch particles and its mechanism of enhanced oil recovery in low-permeability oil reservoirs[J]. SPE Journal, 2021, 26(3): 1422–1435. doi: 10.2118/203831-PA [56] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society, 1805, 95: 65-87. [57] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546–551. doi: 10.1039/tf9444000546 [58] 张景 楠,田磊,张红 卫. 纳米 流体 强化 驱油 机理 研究进展[J]. 油田化学, 2021, 38(1):184-190. doi:10.19346/j.cnki.1000-4092.2021.01.034 ZHANG Jingnan, TIAN Lei, ZHANG Hongwei. Research progress of enhancing oil recovery mechanism by using nanofluids[J]. Oilfield Chemistry, 2021, 38(1): 184–190. doi: 10.19346/j.cnki.1000-4092.2021.01.034 [59] NOSONOVSKY M, BHUSHAN B. Biologically inspired surfaces: Broadening the scope of roughness[J]. Advanced Functional Materials, 2008, 18(6): 843–855. doi: 10.1002/adfm.200701195 [60] NOSONOVSKY M, BHUSHAN B. Biomimetic superhydrophobic surfaces: Multiscale approach[J]. Nano Letters, 2007, 7(9): 2633–2637. doi: 10.1021/nl071023f [61] DENKOVA P S, TCHOLAKOVA S, DENKOV N D, et al. Evaluation of the precision of drop-size determination in oil/water emulsions by low-resolution NMR spectroscopy[J]. Langmuir, 2004, 20(26): 11402–11413. doi: 10.1021/la048649v [62] 刘洪国,孙德军,郝金诚. 新编胶体与界面化学[M]. 北京:化学工业出版社, 2016. LIU Hongguo, SUN Dejun, HAO Jincheng. New edition of colloid and interface chemistry[M]. Beijing: Chemical Industry Press, 2016. [63] 刘鸣华,陈鹏磊,张莉. 界面组装化学[M]. 北京:化学工业出版社, 2020. LIU Minghua, CHEN Penglei, ZHANG Li. Interface assembly chemistry[M]. Beijing: Chemical Industry Press,2020. [64] 孙盈盈,岳湘安,张立娟,等. 乳化作用对水驱后残余油膜效果的实验与评价[J]. 新疆石油地质, 2014, 35(1):73-76. SUN Yingying, YUE Xiang'an, ZHANG Lijuan, et al. Effect of emulation on displacement of residual oil film following water flooding: Experiment and evaluation[J]. Xinjiang Petroleum Geology, 2014, 35(1): 73–76. [65] REZAEI N, FIROOZABADI A. Macro-and microscale water flooding performances of crudes which form w/o emulsions upon mixing with brines[J]. Energy & Fuels, 2014, 28(3): 2092–2103. doi: 10.1021/ef402223d [66] LIU Zheyu, LI Yiqiang, LUAN Huoxin, et al. Pore scale and macroscopic visual displacement of oil-in-water emulsions for enhanced oil recovery[J]. Chemical Engineering Science, 2019, 197: 404–414. doi: 10.1016/j.ces.2019.01.001 [67] LI Junjian, JIANG Hangqiao, WANG Chuan, et al. Porescale investigation of microscopic remaining oil variation characteristics in water-wet sandstone using CT scanning[J]. Journal of Natural Gas Science and Engineering, 2017, 48: 36–45. doi: 10.1016/j.jngse.2017.04.003 [68] 游梦婷. 核磁共振空间分辨谱方法对乳状液形成过程的实时监控研究[D]. 厦门: 厦门大学, 2017. YOU Mengting. Monitoring the formation of oil-water emulsions with spatially resolved NMR spectroscopy methods[D]. Xiamen: Xiamen University, 2017. [69] QI Pengpeng, DANIEL H E, KOH H, et al. Reduction of residual oil saturation in sandstone cores by use of viscoelastic polymers[J]. SPE Journal, 2017, 22(2): 447–458. doi: 10.2118/179689-PA [70] KHORAMIAN R, RAMAZANI S A A, HEKMATZADEH M, et al. Graphene oxide nanosheets for oil recovery[J]. ACS Applied Nano Materials, 2019, 2(9): 5730-5742. doi: 10.1021/acsanm.9b01215 [71] LUO Dan, WANG Feng, ZHU Jingyi, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration[J]. Proceeding of the National Academy of Sciences of the United States of America, 2016, 113: 7711-7716. doi: 10.1073/pnas.1608135113 [72] ALNARABIJI M S, HUSEIN M M. Application of bare nanoparticle-based nanofluids in enhanced oil recovery[J]. Fuel, 2020, 267: 117262. doi: 10.1016/j.fuel.2020.117262 [73] LIU Rui, GAO Shi, PENG Qin, et al. Experimental and molecular dynamic studies of amphiphilic graphene[J]. Fuel, 2022, 330: 125567. doi: 10.1016/j.fuel.2022.125567 [74] GAN Shiyu, ZHONG Lijie, WU Tongshun, et al. Spontaneous and fast growth of large-area craphene nanofilms facilitated by oil/water interfaces[J]. Advanced Materials, 2012, 24(29): 3958–3964. doi: 10.1002/adma.201201098 [75] PEI Haihua, ZHANG Guicai, GE Jijiang, et al. Investigation of synergy between nanoparticle and surfactant in stabilizing oil-in-water emulsions for improved heavy oil recover[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484: 478–484. doi: 10.1016/j.colsurfa.2015.08.025 [76] LIU Rui, LU Yuanyuan, PU Wanfen, et al. Low-energy emulsification of oil-in-water emulsions with selfregulating mobility via a nanoparticle surfactant[J]. Industrial and Engineering Chemistry Research, 2020, 59(41): 18396–18411. doi: 10.1021/acs.iecr.0c03153 [77] LIU Yigang, LIU Changlong, LI Yanyue, et al. Experimental study of an amphiphilic graphene oxide based nanofluid for chemical enhanced oil recovery of heavy oil[J]. New Journal of Chemistry, 2023, 47(4): 1945–1953. doi: 10.1039/D2NJ03802A [78] 顾春元,狄勤丰,沈琛,等. 疏水纳米颗粒在油层微孔道中的吸附机制[J]. 石油勘探与开发, 2011, 38(1):84-89. GU Chunyuan, DI Qinfeng, SHEN Chen, et al. Adsorption of hydrophobic nanoparticles in reservoir microchannells adsorption of hydrophobic nanoparticles in reservoir microchannels[J]. Petroleum Exploration and Development, 2011, 38(1): 84–89. [79] 罗健辉,杨恩海,肖沛文,等. 纳米驱油技术理论与实践[J]. 油田化学, 2020, 37(1):669-674. doi:10.19346/j.cnki.1000-4092.2020.04.018 LUO Jianhui, YANG Enhai, XIAO Peiwen, et al. Nanofluid flooding technology: Theory and practice[J]. Oilfield Chemistry, 2020, 37(1): 669–674. doi: 10.19346/j.cnki.1000-4092.2020.04.018 [80] YUAN Qingqing, XUE Han, LÜ Jianyong, et al. Sizedependent interfacial assembly of graphene oxide at water-oil interfaces[J]. The Journal of Physical Chemistry B, 2020, 124(23): 4835–4842. doi: 10.1021/acs.jpcb.0c02687 [81] PANG Shishi, PU Wanfen, XIE Jianyong, et al. Investigation into the properties of water-in-heavy oil emulsion and its role in enhanced oil recovery during water flooding[J]. Journal of Petroleum Science and Engineering, 2019, 177: 798–807. doi: 10.1016/j.petrol.2019.03.004 [82] GANLEY W J, DUIJNEVELDT J S V. Steady-state droplet size in montmorillonite stabilised emulsions[J]. Soft Matter, 2016, 12: 6481–6489. doi: 10.1039/c6sm01377e [83] ORUC S, CELIK F, VEFA A M. Effect of cement on emulsified asphalt mixtures[J]. Journal of Materials Engineering and Performance, 2007, 16(5): 578–583. doi: 10.1007/s11665-007-9095-2 [84] LIU Rui, LU Jiayue, PU Wanfen, et al. Synergetic effect between in-situ mobility control and micro-displacement for chemical enhanced oil recovery (CEOR) of a surfaceactive nanofluid[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108983. doi: 10.1016/j.petrol.2021.108983 [85] COTE L, KIM F, HUANG Jiaxing. Langmuir-Blodget assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131(3): 1043–1049. doi: 10.1021/ja806262m [86] WEI Bing, LI Qinzhi, NING Jian, et al. Macro-and microscale observations of a surface-functionalized nanocellulose based aqueous nanofluids in chemical enhanced oil recovery (C-EOR)[J]. Fuel, 2019, 263: 1321–1333. doi: 10.1016/j.fuel.2018.09.105 [87] POUYA T, SEYED R S, FARZAN H, et al. Effects of synthesized nanoparticles and Henna-Tragacanth solutions on oil/water interfacial tension: Nanofluids stability considerations[J]. Petroleum, 2022, 6(3): 293–303. doi: 10.1016/j.petlm.2020.03.001 [88] DAI Caili, WANG Xinke, LI Yuyang, et al. Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores[J]. Energy & Fuels, 2017, 31(3): 2663–2668. doi: 10.1021/acs.energyfuels.6b03244 [89] WASAN D T, NIKOLOV A D. Spreading of nanofluids on solids[J]. Nature, 2003, 423: 156–159. doi: 10.1038/nature01591 [90] CAO Jie, CHEN Yingpeng, WANG Xiujun, et al. Janus sulfonated graphene oxide nanosheets with excellent interfacial properties for enhanced oil recovery[J]. Chemical Engineering Journal, 2022, 443: 136391. doi: 10.1016/j.cej.2022.136391 [91] CHEN Lifeng, ZHU Xiaoming, WANG Lei, et al. Experimental study of effective amphiphilic graphene oxide flooding for an ultralow-permeability reservoir[J]. Energy & Fuels, 2018, 32: 11269–11278. doi: 10.1021/acs.energyfuels.8b02576 [92] OGOLO N A, OLAFUYI O A, ONYEKONWU M O. Enhanced oil recovery using nanoparticles[C]. SPE 160847- MS, 2012. doi: 10.2118/160847-MS [93] 宣扬,蒋官澄,黎凌,等. 高性能纳米降滤失剂氧化石墨烯的研制与评价[J]. 石油学报, 2013, 34(5):1010-1016. doi:10.7623/syxb201305025 XUAN Yang, JIANG Guancheng, LI Ling, et al. Preparation and evaluation of nano-graphene oxide as a highperformance fluid loss additive[J]. Acta Petrolei Sinica, 2013, 34(5): 1010–1016. doi: 10.7623/syxb201305025 [94] 杨景斌,侯吉瑞,屈鸣,等. 2-D智能纳米黑卡在低渗透油藏中的驱油性能评价[J]. 油田化学, 2020, 37(2):305-310. doi:10.19346/j.cnki.1000-4092.2020.02.021 YANG Jingbin, HOU Jirui, QU Ming, et al. Evaluation of oil displacement performance of two-dimensional smart black nano-card in low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2): 305–310. doi: 10.19346/j.cnki.1000-4092.2020.02.021 [95] LIU Rui, XU Yingxue, PU Wanfen, et al. Oligomeric ethylene-glycol brush functionalized graphene oxide with exceptional interfacial properties for versatile applications[J]. Applied Surface Science, 2022, 606: 154856. doi: 10.1016/j.apsusc.2022.154856t |
[1] | 李晨曦, 康博韬, 张旭, 郜益华, 陈国宁. 深水浊积水道型储层砂体连通性定量表征探索[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 10-20. |
[2] | 范洪军, 王夏斌, 胡光义, 范廷恩, 何明薇. 复合点坝演化模式及成因分析[J]. 西南石油大学学报(自然科学版), 2022, 44(4): 37-50. |
[3] | 盛广龙, 黄罗义, 赵辉, 饶翔, 马嘉令. 页岩气藏压裂缝网扩展流动一体化模拟技术[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 84-96. |
[4] | 陈依伟, 周玉辉, 梁成钢, 徐田录, 何永清. 页岩油水平井产量变化定量表征模型[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 97-103. |
[5] | 王大成, 刘义坤, 白军辉, 付青春, 陈奋. 曲流河复合点坝砂体构型表征及流体运移机理[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 25-36. |
[6] | 谢日彬, 李海涛, 杨勇, 刘远志, 曲长伟. 珠江口盆地礁灰岩储层特征精细表征[J]. 西南石油大学学报(自然科学版), 2021, 43(2): 23-35. |
[7] | 李晨曦, 王亚青, 杨希濮, 卜范青, 段瑞凯. 深水浊积水道储层构型叠置关系定量表征探索[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 37-46. |
[8] | 芦凤明, 武玺, 朱红云, 张阳, 王芮. 油藏流场定量表征方法及应用[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 111-120. |
[9] | 王焱伟, 刘慧卿, 东晓虎, 张琪琛. 边水稠油油藏蒸汽吞吐后转冷采物理模拟研究[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 91-100. |
[10] | 欧成华, 杨晓, 梁成钢, 黄毅, 朱海燕. 页岩小层水平井对比及其构造三维可视化表征[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 44-50. |
[11] | 刘建华, 汪利兵, 赵靖康, 张俊, 孟云涛. PL油田浅水辫状河三角洲隔夹层精细表征方法[J]. 西南石油大学学报(自然科学版), 2019, 41(5): 10-20. |
[12] | 郑伟, 朱国金, 谭先红, 刘新光, 王磊. 海上稠油火烧油层物理模拟实验研究[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 107-112. |
[13] | 罗东红, 朱旭, 戴宗, 程佳, 宁玉萍. 强底水礁灰岩油藏水驱采收率表征模型[J]. 西南石油大学学报(自然科学版), 2018, 40(5): 105-112. |
[14] | 刘晓, 陈艳华, 钟卉元, 李六军, 陈宇. 油田埋地碳钢管道外腐蚀行为研究[J]. 西南石油大学学报(自然科学版), 2018, 40(4): 169-176. |
[15] | 叶双江, 姜汉桥. 不同注采方式的流场计算模型及物模验证[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 129-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||