[1] 魏国齐,朱永进,郑剑锋,等. 塔里木盆地寒武系盐下构造-岩相古地理、规模源储分布与勘探区带评价[J]. 石油勘探与开发, 2021, 48(6): 1114-1126. doi: 10.11698/PED.2021.06.04 WEI Guoqi, ZHU Yongjin, ZHENG Jianfeng, et al. Tectonic-lithofacies paleogeography, large-scale source-reservoir distribution and exploration zones of Cambrian subsalt formation, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1114–1126. doi: 10.11698/PED.2021.06.04 [2] 李建忠,陶小晚,白斌,等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021, 48(1): 52-67. doi: 10.11698/PED.2021.01.05 LI Jianzhong, TAO Xiaowan, BAI Bin, et al. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 2021, 48(1): 52–67. doi: 10.11698/PED.2021.01.05 [3] 邬光辉,庞雄奇,李启明,等. 克拉通碳酸盐岩构造与油气——以塔里木盆地为例[M]. 北京:科学出版社, 2016. WU Guanghui, PANG Xiongqi, LI Qiming, et al. Carbonate structure and oil and gas in Craton: A case study of Tarim Basin[M]. Beijing: Science Press, 2016. [4] 江同文,韩剑发,邬光辉,等. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J]. 石油勘探与开发, 2020, 47(2): 213-224. doi: 10.11698/PED.2020.02.01 JIANG Tongwen, HAN Jianfa, WU Guanghui, et al. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong Uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2): 213–224. doi: 10.11698/PED.2020.02.01 [5] 王清华,杨海军,汪如军,等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71. doi: 10.3969/j.issn.16727703.2021.04.005 WANG Qinghua, YANG Haijun, WANG Rujun, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58–71. doi: 10.3969/j.issn.1672-7703.2021.04.005 [6] 田军,杨海军,朱永峰,等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. doi: 10.7623/syxb202108001 TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971–985. doi: 10.7623/syxb202108001 [7] 杨海军,邓兴梁,张银涛,等. 塔里木盆地满深1 井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 13-23. doi: 10.3969/j.issn.1672-7703.2020.03.002 YANG Haijun, DENG Xingliang, ZHANG Yintao, et al. A great discovery and its significance of exploration for Ordovician ultra-deep fault-controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 13–23. doi: 10.3969/j.issn.16727703.2020.03.002 [8] 张水昌,苏劲,张斌,等. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素[J]. 石油学报, 2021, 42(12): 1566-1580. doi: 10.7623/syxb202112-003 ZHANG Shuichang, SU Jin, ZHANG Bin, et al. Genetic mechanism and controlling factors of deep marine light oil and condensate oil in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1566–1580. doi: 10.7623/syxb202112-003 [9] ZHU Guangyou, ZHANG Zhiyao, ZHOU Xiaoxiao, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930. doi: 10.1016/j.earscirev.2019.102930 [10] 马安来,金之钧,李慧莉,等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157 MA Anlai, JIN Zhijun, LI Huili, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole Area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737–1753. doi: 10.3799/dqkx.2019.157 [11] LI Jingfei, ZHANG Zhiyao, ZHU Guangyou, et al. Geochemical characteristics and the origin of superdeep condensates in Tarim Basin, China[J]. ACS Omega, 2021, 6(11): 7275–7285. doi: 10.1021/acsomega.0c04932 [12] SU Jin, YANG Haijun, WANG Xiaomei, et al. The genesis of gas condensates and light oils in the lower paleozoic of Tarim Basin, NW China: The exploration implications for ultra-deep petroleum[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111032. doi: 10.1016/j.petrol.2022.111032 [13] SHEN Weibing, CHEN Jianfa, WANG Yangyang, et al. The origin, migration and accumulation of the Ordovician gas in the Tazhong III region, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2018, 101: 55–77. doi: 10.1016/j.marpetgeo.2018.11.031 [14] 赵星星,李斌,邬光辉,等. 塔里木盆地塔中III区奥陶系多相态油气藏成因及富集模式[J]. 天然气地球科学, 2022, 33(1): 36-48. doi: 10.11764/j.issn.16721926.2021.07.004 ZHAO Xingxing, LI Bin, WU Guanghui, et al. Genesis and enrichment model of Ordovician multi-phase oil and gas reservoirs in Tazhong III Block, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(1): 36–48. doi: 10.11764/j.issn.1672-1926.2021.07.004 [15] 马安来,漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262. doi: 10.13745/j.esf.sf.2023.2.21 MA Anlai, QI Lixin. Geochemical characteristics and phase behavior of the Ordovician ultra-deep reservoir fluid, No.4 fault, northern Shuntuoguole, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 247–262. doi: 10.13745/j.esf.sf.2023.2.21 [16] 杜金虎. 塔里木盆地寒武奥陶系碳酸盐岩油气勘探[M]. 北京:石油工业出版社, 2010. DU Jinhu. Hydrocarbon exploration of Cambrian–Ordovician carbonate rocks in Tarim Basin[M]. Beijing: Petroleum Industry Press, 2010. [17] 邬光辉,马兵山,韩剑发,等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520. doi: 10.11698/PED.2021.03.07 WU Guanghui, MA Bingshan, HAN Jianfa, et al. Origin and growth mechanisms of strike-slip faults in the central Tarim Cratonic Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(3): 510–520. doi: 10.11698/PED.2021.03.07 [18] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. doi: 10.3969/j.issn.1672-7703.2020.01.010 QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei Area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102– 111. doi: 10.3969/j.issn.1672-7703.2020.01.010 [19] 李素梅,董月霞,王政军,等. 南堡凹陷潜山原油特征与成因探讨[J]. 沉积学报, 2014, 32(2): 376-384. doi: 10.14027/j.cnki.cjxb.2014.02.022 LI Sumei, DONG Yuexia, WANG Zhengjun, et al. Characteristics and formation mechanism of deep oils from Nanpu Depression, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2014, 32(2): 376–384. doi: 10.14027/j.cnki.cjxb.2014.02.022 [20] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide (Volume 2): Biomarkers and isotopes in petroleum exploration and earth history[M]. Cambridge: Cambridge University Press, 2005. [21] CONNAN J, CASSOU A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1–23. doi: 10.1016/0016-7037(80)90173-8 [22] HUGHES W B, HOLBA A G, DZOU I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581–3598. doi: 10.1016/00167037(95)00225-O [23] WU Luya, JIN Zhijun, LIU Keyu, et al. Evolution of a deeply-buried oil reservoir in the north Shuntuoguole low uplift, Tarim Basin, western China: Insights from molecular geochemistry and Re–Os geochronology[J]. Marine and Petroleum Geology, 2021, 134: 105365. doi: 10.1016/ j.marpetgeo.2021.105365 [24] CHEN Zhonghong, CHAI Zhi, CHENG Bin, et al. Geochemistry of high-maturity crude oil and gas from deep reservoirs and their geological significance: A case study on Shuntuoguole low uplift, Tarim Basin, western China[J]. AAPG Bulletin, 2021, 105(1): 65–107. doi: 10.1306/07072019015 [25] LI M J, WANG G, LILLIS P G, et al. The significance of 24-norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian–Ordovician source rocks from the cratonic region of the Tarim Basin, NW China[J]. Applied Geochemistry, 2012, 27(8): 1643–1654. doi: 10.1016/j.apgeochem.2012.03.006 [26] ZHANG Shuichang, HUANG Haiping. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 1. Oil family classification[J]. Organic Geochemistry, 2005, 36(8): 1204–1214. doi: 10.1016/j.orggeochem.2005.01.013 [27] 韩剑发,邬光辉,肖中尧,等. 塔里木盆地寒武系烃源岩分布的重新认识及其意义[J]. 地质科学, 2020, 55(1): 17-29. doi: 10.12017/dzkx.2020.002 HAN Jianfa, WU Guanghui, XIAO Zhongyao, et al. Recognition of the distribution of Cambrian source rocks and its significance for exploration in Tarim Basin[J]. Chinese Journal of Geology, 2020, 55(1): 17–29. doi: 10.12017/dzkx.2020.002 [28] LI S M, AMRANI A, PANG X, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78: 1–22. doi: 10.1016/j.orggeochem.2014.10.004 [29] ZHANG S C, HANSON A, MOLDOWAN J, et al. Paleozoic oil–source rock correlations in the Tarim Basin, NW China[J]. Organic Geochemistry, 2000, 31(4): 273–286. doi: 10.1016/S0146-6380(00)00003-6 [30] 李峰,朱光有,吕修祥,等. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定[J]. 石油学报, 2021, 42(11): 1417-1436. doi: 10.7623/syxb202111002 LI Feng, ZHU Guangyou, LÜ Xiuxiang, et al. The disputes on the source of Paleozoic marine oil and gas and the determination of the Cambrian system as the main source rocks in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1417–1436. doi: 10.7623/syxb202111002 [31] SUN Yongge, XU Shiping, LU Hong, et al. Source facies of the Paleozoic petroleum systems in the Tabei Uplift, Tarim Basin, NW China: Implications from aryl isoprenoids in crude oils[J]. Organic Geochemistry, 2003, 34(4): 629–634. doi: 10.1016/S0146-6380(03)00063-9 [32] WANG T G, HE F Q, WANG C J, et al. Oil filling history of the Ordovician oil reservoir in the major part of the Tahe Oilfield, Tarim Basin, NW China[J]. Organic Geochemistry, 2008, 39(11): 1637–1646. doi: 10.1016/j.orggeochem.2008.05.006 [33] WANG Qi, HAO Fang, CAO Zicheng, et al. Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei Field, Tarim Basin, China: Implications on alteration and mixing[J]. Marine and Petroleum Geology, 2021, 123: 104725. doi: 10.1016/j.marpetgeo.2020.104725 [34] ZHOU Chenxi, YU Shuang, HUANG Wenyu, et al. Oil maturities, mixing and charging episodes in the cratonic regions of the Tarim Basin, NW China: Insight from biomarker and diamondoid concentrations and oil bulk properties[J]. Marine and Petroleum Geology, 2021, 126: 104903. doi: 10.1016/j.marpetgeo.2021.104903 [35] ALEXANDER C, MASARU S, KUNIAKI T. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J]. Organic Geochemistry, 1997, 26(7–8): 483–489. doi: 10.1016/S0146-6380(97)00022-3 [36] HUANG H, ZHANG S, GU Y, et al. Impacts of source input and secondary alteration on the extended tricyclic terpane ratio: A case study from Palaeozoic sourced oils and condensates in the Tarim Basin, NW China[J]. Organic Geochemistry, 2017, 112: 158–169. doi: 10.1016/j.orggeochem.2017.07.012 [37] RADKE M, WELTE D H, WILLSCH H. Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type[J]. Organic Geochemistry, 1986, 10(1–3): 51–63. doi: 10.1016/0146-6380(86)90008-2 [38] THOMPSON K F M. Light hydrocarbons in subsurface sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 657–672. doi: 10.1016/0016-7037(79)90251-5 [39] DAHL J E P, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54–57. doi: 10.1038/19953 [40] ZHOU Chenxi, YU Shuang, HUANG Wenyu, et al. Oil maturities, mixing and charging episodes in the cratonic regions of the Tarim Basin, NW China: Insight from biomarker and diamondoid concentrations and oil bulk properties[J]. Marine and Petroleum Geology, 2021, 126: 104903. doi: 10.1016/j.marpetgeo.2021.104903 [41] SU Jin, WANG Xiaomei, YANG Haijun, et al. Hydrothermal alteration and hydrocarbon accumulations in ultradeep carbonate reservoirs along a strike-slip fault system, Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108605. doi: 10.1016/j.petrol.2021.108605 [42] 田辉,肖贤明,李贤庆,等. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J]. 地球化学, 2007, 36(1): 71-77. doi: 10.3321/j.issn:0379-1726.2007.01.008 TIAN Hui, XIAO Xianming, LI Xianqing, et al. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen and crude oil-cracking gases[J]. Geochimica, 2007, 36(1): 71–77. doi: 10.3321/j.issn:0379-1726.2007.01.008 [43] ROONEY M, CLAYPOOL G, CHUNG H, et al. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3–4): 219–232. doi: 10.1016/0009-2541(95)00119-0 [44] 韩剑发,张海祖,于红枫,等. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探[J]. 岩石学报, 2012, 28(3): 769782. HAN Jianfa, ZHANG Haizu, YU Hongfeng, et al. Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong Uplift[J]. Acta Petrologica Sinica, 2012, 28(3): 769–782. [45] 张育民. 塔里木盆地卡塔克隆起斜坡区油气成藏期次研究[J]. 石油实验地质, 2021, 43(6): 1015-1023. doi: 10.11781/sysydz2021061015 ZHANG Yumin. Petroleum charge history of the slope area of Katake Uplift in Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 1015–1023. doi: 10.11781/sysydz2021061015 [46] 杨率,邬光辉,朱永峰,等. 塔里木盆地北部地区超深断控油藏关键成藏期[J]. 石油勘探与开发, 2022, 49(2): 249-261. doi: 10.11698/PED.2022.02.04 YANG Shuai, WU Guanghui, ZHU Yongfeng, et al. Key oil accumulation periods of ultra-deep fault-controlled oil reservoir in northern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 249– 261. doi: 10.11698/PED.2022.02.04 [47] 韩剑发,邬光辉,杨海军,等. 塔里木盆地塔中隆起凝析气藏类型与成因[J]. 天然气工业, 2021, 41(7): 24-32. doi: 10.3787/j.issn.1000-0976.2021.07.003 HAN Jianfa, WU Guanghui, YANG Haijun, et al. Type and genesis of condensate gas reservoir in the Tazhong Uplift of the Tarim Basin[J]. Natural Gas Industry, 2021, 41(7): 24–32. doi: 10.3787/j.issn.1000-0976.2021.07.003 [48] ZHU Guangyou, LI Jingfei, CHI Linxian, et al. The influence of gas invasion on the composition of crude oil and the controlling factors for the reservoir fluid phase[J]. Energy & Fuels, 2020, 34(3): 2710–2725. doi: 10.1021/acs.energyfuels.9b03548 [49] 周肖肖. 塔里木盆地塔中地区奥陶系碳酸盐盐岩油气成藏模式研究[D]. 北京:中国石油大学(北京), 2020. doi: 10.27643/d.cnki.gsybu.2020.000036 ZHOU Xiaoxiao. Accumulation mode of hydrocarbon in the Ordovician carbonate reservoir in the Tazhong Area, Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2020. doi: 10.27643/d.cnki.gsybu.2020.000036 [50] ZHU Guangyou, LI Jingfei, ZHANG Zhiyao, et al. Stability and cracking threshold depth of crude oil in 8000 m ultra-deep reservoir in the Tarim Basin[J]. Fuel, 2020, 282: 118777. doi: 10.1016/j.fuel.2020.118777 [51] 张仲培,王毅,云金表,等. 塔中地区断裂不同演化阶段对油气聚集的控制[J]. 石油与天然气地质, 2009, 30(3): 316-323. doi: 10.3321/j.issn:0253-9985.2009.03.010 ZHANG Zhongpei, WANG Yi, YUN Jinbiao, et al. Control of faults at different evolution stages on hydrocarbon accumulation in Tazhong Area, the Tarim Basin[J]. Oil & Gas Geology, 2009, 30(3): 316–323. doi: 10.3321/j.issn:0253-9985.2009.03.010 [52] 王阳洋,陈践发,庞雄奇,等. 塔中地区奥陶系油气充注特征及运移方向[J]. 石油学报, 2018, 39(1): 54-68. doi: 10.7623/syxb201801005 WANG Yangyang, CHEN Jianfa, PANG Xiongqi, et al. Ordovician hydrocarbon charging characteristics and migration direction in Tazhong Area[J]. Acta Petrolei Sinica, 2018, 39(1): 54–68. doi: 10.7623/syxb201801005 |