[1] 陈利新,贾承造,姜振学,等. 塔里木盆地哈拉哈塘地区碳酸盐岩富油模式与主控因素[J]. 石油学报, 2023, 44(6): 948-961. doi: 10.7623/syxb202306005 CHEN Lixin, JIA Chengzao, JIANG Zhenxue, et al. Oil enrichment model and main controlling factors of carbonate reservoirs in Halahatang Area, Tarim Basin[J]. Acta Petrolei Sinica, 2023, 44(6): 948–961. doi: 10.7623/syxb202306005 [2] 张银涛,孙冲,王轩,等. 哈拉哈塘油田走滑断裂带控储成藏规律初探[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 10-18. doi: 10.11885/j.issn.16745086.2018.08.20.02 ZHANG Yintao, SUN Chong, WANG Xuan, et al. Reservoir formation patterns in the strike-slip fault zone of the Halahatang Oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(1): 10–18. doi: 10.11885/j.issn.1674-5086.2018.08.20.02 [3] 宁超众,胡素云,李勇,等. 深层与露头碳酸盐岩岩溶洞穴对比及类比——以塔里木盆地哈拉哈塘油田奥陶系良里塔格组古岩溶洞穴与美国德克萨斯州 Longhorn近现代岩溶洞穴为例[J]. 天然气地球科学, 2020, 31(12): 1700-1716. doi: 10.11764/j.issn.1672-1926.2020.05.018 NING Chaozhong, HU Suyun, LI Yong, et al. Comparison and analog of the deep-buried and outcrop carbonate karst cave systems: Case study of the Lianglitage Formation karst cave system, Halahatang Oilfield, Tarim Basin, China and the Longhorn modern karst cave system, Texas, USA[J]. Natural Gas Geoscience, 2020, 31(12): 1700–1716. doi: 10.11764/j.issn.1672-1926.2020.05.018 [4] 宁超众,胡素云,潘文庆,等. 塔里木盆地哈拉哈塘地区奥陶系良里塔格组古地貌与岩溶洞穴特征[J]. 石油与天然气地质, 2020, 41(5): 985-995. doi: 10.11743/ogg20200509 NING Chaozhong, HU Suyun, PAN Wenqing, et al. Characterization of paleo-topography and karst caves in Ordovician Lianglitage Formation, Halahatang Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 985–995. doi: 10.11743/ogg20200509 [5] 魏威. 哈拉哈塘油田新垦—热瓦普区块奥陶系岩溶储层发育特征[D]. 北京:中国石油大学(北京), 2018. WEI Wei. The characteristics of Ordovician karst reservoirs in Xinken–Rewapu Block, Halahatang Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2018. [6] 张庆玉,秦凤蕊,梁彬,等. 塔北哈拉哈塘地区奥陶系碳酸盐岩古地貌及岩溶储层发育特征[J]. 地质科技情报, 2017, 36(1): 168175. ZHANG Qingyu, QIN Fengrui, LIANG Bin, et al. Paleogeomorphology and karst reservoir development of Ordovician carbonate in Halahatang Area, northern Tarim Basin[J]. Geological Science and Technology Information, 2017, 36(1): 168–175. [7] 吴国强,张丽娟,杨振周,等. 塔里木盆地哈拉哈塘地区奥陶系储层古岩溶作用及其与裂缝的关系[J]. 石油实验地质, 2017, 39(6): 790-796. doi: 10.11781/sysydz201706790 WU Guoqiang, ZHANG Lijuan, YANG Zhenzhou, et al. Paleo-karstification of the Ordovician carbonate reservoirs and the relationship with fractures in the Halahatang Area of Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39(6): 790–796. doi: 10.11781/sysydz201706790 [8] 高翔,马青,曹康,等. 地下暗河溶洞系统特征描述及地质建模——以塔里木盆地哈拉哈塘地区为例[J]. 断块油气田, 2016, 23(6): 782-787. doi: 10.6056/dkyqt201606020 GAO Xiang, MA Qing, CAO Kang, et al. Characteristics and geological modeling of underground river watereroded cave system: Taking Harahatang Area of Tarim Basin as an example[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 782–787. doi: 10.6056/dkyqt201606020 [9] 冯建伟,郭宏辉,汪如军,等. 塔里木盆地塔北地区深层走滑断裂分段性成因机制[J]. 地球科学, 2023, 48(7): 2506-2519. doi: 10.3799/dqkx.2023.110 FENG Jianwei, GUO Honghui, WANG Rujun, et al. Segmentation genesis mechanism of strike-slip fracture of deep carbonate rocks in Tabei Area, Tarim Basin[J]. Earth Science, 2023, 48(7): 2506–2519. doi: 10.3799/dqkx.2023.110 [10] 黄少英,宋兴国,罗彩明,等. 塔北隆起 X型走滑断裂成因机制的新解释[J]. 现代地质, 2021, 35(6): 17971808, 18-29. doi: 10.19657/j.geoscience.1000-8527.2021.188 HUANG Shaoying, SONG Xingguo, LUO Caiming, et al. Formation mechanism of the conjugate strike-slip faults in Tabei Uplift[J]. Geoscience, 2021, 35(6): 1797–1808, 1829. doi: 10.19657/j.geoscience.1000-8527.2021.188 [11] WU Guanghui, GAO Lianhua, ZHANG Yingtao, et al. Fracture attributes in reservoir-scale carbonate fault damage zones and implications for damage zone width and growth in the deep subsurface[J]. Journal of Structural Geology, 2019, 118: 181–193. doi: 10.1016/j.jsg.2018.10.008 [12] 肖江,王祖君,张明,等. 哈拉哈塘油田走滑断裂控藏研究——以 RP8断裂为例[J]. 长江大学学报(自然科学版), 2019, 16(6): 19-23. doi: 10.3969/j.issn.16731409.2019.06.005 XIAO Jiang, WANG Zujun, ZHANG Ming, et al. Study on the reservoir control of the strike-slip fault in Halahatang Oilfield and its application: By taking RP8 Fault for example[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(6): 19–23. doi: 10.3969/j.issn.1673-1409.2019.06.005 [13] 马德波,邬光辉,朱永峰,等. 塔里木盆地深层走滑断层分段特征及对油气富集的控制——以塔北地区哈拉哈塘油田奥陶系走滑断层为例[J]. 地学前缘, 2019, 26(1): 225-237. doi: 10.13745/j.esf.sf.2019.1.10 MA Debo, WU Guanghui, ZHU Yongfeng, et al. Segmentation characteristics of deep strike slip faults in the Tarim Basin and its control on hydrocarbon enrichment: Taking the Ordoviclan strike slip faut in the Halahatang Oilfield in the Tabei Area as an example[J]. Earth Science Frontiers, 2019, 26(1): 225–237. doi: 10.13745/j.esf.sf.2019.1.10 [14] 徐中祥,马庆佑. 塔河油田奥陶系走滑断裂带分区差异变形特征与控储模式[J]. 海相油气地质, 2022, 27(2): 124-134. doi: 10.3969/j.issn.1672-9854.2022.02.002 XU Zhongxiang, MA Qingyou. Zonal differential deformation and reservoir control model of Ordovician strikeslip fault zone in Tahe Oilfield[J]. Marine Origin Petroleum Geology, 2022, 27(2): 124–134. doi: 10.3969/j.issn.1672-9854.2022.02.002 [15] 郑晓丽,安海亭,王祖君,等. 塔北哈拉哈塘地区走滑断裂分段特征及其与油气成藏的关系[J]. 浙江大学学报(理学版), 2018, 45(2): 219-225. doi: 10.3785/j.issn.1008-9497.2018.02.012 ZHENG Xiaoli, AN Haiting, WANG Zujun, et al. The segmentation features of strike-slip fault and its relation with the fault and reservoirs in Halahatang Area, north Tarim Basin[J]. Journal of Zhejiang University (Science Edition), 2018, 45(2): 219–225. doi: 10.3785/j.issn.10089497.2018.02.012 [16] 邬光辉,马兵山,韩剑发,等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(1): 1-11. doi: 10.11698/PED.2021.03.07 WU Guanghui, MA Bingshan, HAN Jianfa, et al. Origin and growth mechanisms of strike-slip faults in the central Tarim Cratonic Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 1–11. doi: 10.11698/PED.2021.03.07 [17] 杨海军,邬光辉,韩剑发,等. 塔里木克拉通内盆地走滑断层构造解析[J]. 地质科学, 2020, 55(1): 1-16. doi: 10.12017/dzkx.2020.001 YANG Haijun, WU Guanghui, HAN Jianfa, et al. Structural analysis of strike-slip faults in the Tarim Intracratonic Basin[J]. Chinese Journal of Geology, 2020, 55(1): 1–16. doi: 10.12017/dzkx.2020.001 [18] 马德波,何登发,陶小晚,等. 塔北哈拉哈塘地区剪切断裂系统构造特征及其对油气分布的控制[J]. 地质科学, 2016, 51(2): 470-483. doi: 10.12017/dzkx.2016.010 MA Debo, HE Dengfa, TAO Xiaowan, et al. Structural features of shear fault system and its control on hydrocarbon distribution in Halahatang Area, north Tarim Basin[J]. Chinese Journal of Geology, 2016, 51(2): 470–483. doi: 10.12017/dzkx.2016.010 [19] 代兰,邬光辉,陈鑫,等. 共轭走滑断裂形成演化的控制因素及物理模拟实验[J]. 新疆石油地质, 2023, 44(1): 43-50. doi: 10.7657/XJPG20230106 DAI Lan, WU Guanghui, CHEN Xin, et al. Controlling factors and physical simulation experiments on formation and evolution of conjugate strike slip faults[J]. Xinjiang Petroleum Geology, 2023, 44(1): 43–50. doi: 10.7657/XJPG20230106 [20] 郑和荣,胡宗全,云露,等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238. doi: 10.13745/j.esf.sf.2022.8.7 ZHENG Herong, HU Zongquan, YUN Lu, et al. Strikeslip faults in marine Cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation[J]. Earth Science Frontiers, 2022, 29(6): 224–238. doi: 10.13745/j.esf.sf.2022.8.7 [21] 贾承造,马德波,袁敬一,等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. doi: 10.3787/j.issn.1000-0976.2021.08.008 JIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics, formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(8): 81–91. doi: 10.3787/j.issn.1000-0976.2021.08.008 [22] 邬光辉,成丽芳,刘玉魁,等. 塔里木盆地寒武—奥陶系走滑断裂系统特征及其控油作用[J]. 新疆石油地质, 2011, 32(3): 239243. WU Guanghui, CHENG Lifang, LIU Yukui, et al. Strikeslip fault system of the cambrian-ordovician and its oilcontrolling effect in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 239–243. [23] 邬光辉,陈鑫,马兵山,等. 塔里木盆地晚新元古代—早古生代板块构造环境及其构造-沉积响应[J]. 岩石学报, 2021, 37(8): 2431-2441. doi: 10.8654/10000569/2021.08.11 WU Guanghui, CHEN Xin, MA Bingshan, et al. The tectonic environments of the Late Neoproterozoic–Early Paleozoic and its tectono-sedimentary response in the Tarim Basin[J]. Acta Petrologica Sinica, 2021, 37(8): 2431– 2441. doi: 10.8654/1000-0569/2021.08.11 [24] 邬光辉,邓卫,黄少英,等. 塔里木盆地构造-古地理演化[J]. 地质科学, 2020, 55(2): 305-321. doi: 10.12017/dzkx.2020.020 WU Guanghui, DENG Wei, HUANG Shaoying, et al. Tectonic-paIeogeographic evolution in the Tarim Basin[J]. Scientia Geologica Sinica, 2020, 55(2): 305–321. doi: 10.12017/dzkx.2020.020 [25] ISMAT Z, TOENEBOEHN K. Deformation along a salient-transverse zone junction: An example from the Leamington transverse zone, Utah, Sevier fold-thrust belt[J]. Journal of Structural Geology, 2015, 75: 60–79. [26] 马兵山,梁瀚,邬光辉,等. 四川盆地中部地区多期次走滑断层的形成及演化[J]. 石油勘探与开发, 2023, 50(2): 333-345. doi: 10.11698/PED.20220655 MA Bingshan, LIANG Han, WU Guanghui, et al. Formation and evolution of the strike-slip faults in the central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(2): 333–345. doi: 10.11698/PED.20220655 [27] YANG P, WU G, NURIEL P, et al. In situ LA-ICPMS U-Pb dating and geochemical characterization of faultzone calcite in the central Tarim Basin, northwest China: Implications for fluid circulation and fault reactivation[J]. Chemical Geology, 2021, 568: 120125. doi: 10.1016/j.chemgeo.2021.120125 [28] ROBERTS N M W, WALKER R J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of riftrelated fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531–534. doi: 10.1130/G37868.1 [29] CONG Fuyun, TIAN Jinqiang, HAO Fang, et al. Calcite U-Pb ages constrain petroleum migration pathways in tectonic complex basins[J]. Geology, 2022, 50(6): 644–649. doi: 10.1130/G49750.1 [30] 杨海军,李曰俊,马德波,等. 塔里木盆地东部古生代中期伸展构造的发现及其地质意义[J]. 地质科学, 2022, 57(3): 633-652. doi: 10.12017/dzkx.2022.037 YANG Haijun, LI Yuejun, MA Debo, et al. The MidPaleozoic extensional structures revealed in the eastern Tarim Basin and their geological significance[J]. Chinese Journal of Geology, 2022, 57(3): 633–652. doi: 10.12017/dzkx.2022.037 [31] WU Guanghui, YUAN Yajuan, HUANG Shaoying, et al. The dihedral angle and intersection processes of a conjugate strike-slip fault system in the Tarim Basin, NW China[J]. Acta Geologica Sinica, 2018, 92(1): 74–88. |