西南石油大学学报(自然科学版) ›› 2025, Vol. 47 ›› Issue (3): 10-24.DOI: 10.11885/j.issn.1674-5086.2023.09.14.02
欧成华1,2, 王泽宇1, 柳金城3, 李兆亮3, 梅华3
收稿日期:2023-09-14
发布日期:2025-07-11
通讯作者:
欧成华,E-mail: cho-mm@163.com
作者简介:欧成华,1971年生,男,汉族,四川成都人,教授,博士研究生导师,主要从事地质油藏一体化及人工智能等方面的科研和教学工作。E-mail:cho-mm@163.com基金资助:OU Chenghua1,2, WANG Zeyu1, LIU Jincheng3, LI Zhaoliang3, MEI Hua3
Received:2023-09-14
Published:2025-07-11
摘要: 逆冲走滑断层体系广泛分布在含油气盆地富油二级构造带中,定量表征对油气勘探开发意义重大,受水平挤压应力与压扭剪切应力叠加耦合作用,逆冲走滑断层体系内同时发生逆冲推覆位移与走滑位移,造成体系内地层破碎、断层体系复杂、测井与地震响应杂乱,断层识别、组合、表征与建模困难。围绕逆冲走滑断层成生机制特点及断层体系复杂性解析与表征,研发出分区分级解析与三维全景表征技术,成功应用于柴达木盆地英东油田油砂山断层下盘逆冲走滑断层体系的定量解析与三维全景表征。依靠分区对比,建立关键标志层交叉引层与分区标定技术,有效解决了逆冲走滑断层体系破碎地层层位标定多解性强的难题,实施了对研究区油砂山断层下盘6个关键标志层的有效标定与全区满覆盖追踪。应用多尺度多类型逆冲走滑断层褶皱阶梯状网格建模与全景可视化表征技术,实现了对研究区油砂山断层下盘逆冲走滑断层剖面—平面—三维立体空间多视域全景可视化表征。
中图分类号:
欧成华, 王泽宇, 柳金城, 李兆亮, 梅华. 逆冲走滑断层分区分级解析与三维全景表征[J]. 西南石油大学学报(自然科学版), 2025, 47(3): 10-24.
OU Chenghua, WANG Zeyu, LIU Jincheng, LI Zhaoliang, MEI Hua. Zoning-grading Analysis and 3D Panoramic Characterization of Thrust Strike-slip Faults[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2025, 47(3): 10-24.
| [1] 袁亚娟,吕宝凤,刘见宝,等. 柴达木盆地断裂发育特征及其动力学机制探讨[J]. 西南石油大学学报(自然科学版), 2010, 32(6): 46-52. doi: 10.3863/j.issn.1674-5086.2010.06.010 YUAN Yajuan, LÜ Baofeng, LIU Jianbao, et al. The kinematic characteristics of the fault system of Qaidam Basin and its dynamic mechanism[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(6): 46-52. doi: 10.3863/j.issn.1674-5086.2010.06.010 [2] 李明义,岳湘安,江青春,等. 柴达木盆地北缘主要构造带构造演化与油气成藏关系[J]. 天然气地球科学, 2012, 23(3): 461-468. LI Mingyi, YUE Xiang'an, JIANG Qingchun, et al. Relationship between hydrocarbon accumulation and tectonic evolution in main structural belt of the northern border of Qaidam Basin[J]. Natural Gas Geoscience, 2012, 23(3): 461-468. [3] 陈思明,侯明才,房启飞,等. 塔北隆起英买2地区奥陶系油气成藏特征及富集规律[J]. 岩性油气藏, 2015, 27(6): 64-71. doi: 10.3969/j.issn.1673-8926.2015.06.009 CHEN Siming, HOU Mingcai, FANG Qifei, et al. Hydrocarbon accumulation and enrichment rule of Ordovician in Yingmai-2 Area, northern uplift of Tarim Basin[J]. Lithologic Reservoirs, 2015, 27(6): 64-71. doi: 10.3969/j.issn.1673-8926.2015.06.009 [4] 盛书中,万永革,黄骥超,等. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报, 2015, 58(2): 436-452. doi: 10.6038/cjg20150208 SHENG Shuzhong, WAN Yongge, HUANG Jichao, et al. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(2): 436-452. doi: 10.6038/cjg20150208 [5] 向杰,陈尚斌,王阳,等. 断裂体系对页岩气保存的影响——以滇东北地区五峰—龙马溪组为例[J]. 煤炭学报, 2021, 46(11): 3599-3612.doi: 10.13225/j.cnki.jccs.2020.1645 XIANG Jie, CHEN Shangbin, WANG Yang, et al. Effect of fault system on shale gas preservation: A case study of the Wufeng-Longmaxi Formation in northeast Yunnan Area[J]. Journal of China Coal Society, 2021, 46(11): 3599-3612. doi: 10.13225/j.cnki.jccs.2020.1645 [6] 纪贤伟. 三维地震资料在松辽盆地北部西部斜坡的应用[J]. 非常规油气, 2019, 6(5): 23-31. JI Xianwei. Application of 3D seismic data to the western slope of northern Songliao Basin[J]. Unconventional Oil & Gas, 2019, 6(5): 23-31. [7] OU Chenghua, CHEN Wei, LI Chaochun, et al. Structural geometrical analysis and simulation of decollement growth folds in piedmont Fauqi Anticline of Zagros mountains[J]. Science China Earth Sciences, 2016, 59: 1885-1898. doi: 10.1007/s11430-016-5332-6 [8] 李婷婷,侯思宇,马世忠,等. 断层识别方法综述及研究进展[J]. 地球物理学进展, 2018, 33(4): 1507-1514.doi: 10.6038/pg2018BB0311 LI Tingting, HOU Siyu, MA Shizhong, et al. Overview and research progress of fault identification method[J]. Progress in Geophysics, 2018, 33(4): 1507-1514. doi: 10.6038/pg2018BB0311 [9] 肖坤泽,童亨茂. 走滑断层研究进展及启示[J]. 地质力学学报, 2020, 26(2): 151-166. doi: 10.12090/j.issn.1006-6616.2020.26.02.015 XIAO Kunze, TONG Hengmao. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 2020, 26(2): 151-166. doi: 10.12090/j.issn.1006-6616.2020.26.02.015 [10] LIN J, STEIN R S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02303. doi: 10.1029/2003JB002607 [11] CHEN L, KHAN S D. InSAR observation of the strike-slip faults in the northwest Himalayan frontal thrust system[J]. Geosphere, 2010, 6(5): 731-736. [12] LI Yuqiang, WANG Dun, XU Shenghui, et al. Thrust and conjugate strike-slip faults in the 17 June 2018 MJMA 6.1(Mw 5.5) Osaka, Japan, earthquake sequence[J]. Seismological Research Letters, 2019, 90(6): 2132-2141. doi: 10.1785/0220190122 [13] GRINGARTEN E J, ARPAT G B, HAOUESSE M A, et al. New grids for robust reservoir modeling[C]. SPE 116649MS, 2008. doi: 10.2118/116649-MS [14] ALPAK F O, CHEN T. Dynamic effects of fault modeling on stair-step and corner-point grids[J]. Journal of Petroleum Exploration and Production, 2021, 11(3): 1323-1338. doi: 10.1007/s13202-020-01082-1 [15] CHEN Liangzhi, QIN Jie, LU Yongchang. Research on artificial synthetic seismic record based on adaptive positive definite least squares method[J]. International Journal of Computer Applications in Technology, 2020, 62(4): 318-326. doi: 10.1504/IJCAT.2020.107422 [16] VELOSO E E, GOMILA R, CEMBRANO J, et al. Stress fields recorded on large-scale strike-slip fault systems: Effects on the tectonic evolution of crustal slivers during oblique subduction[J]. Tectonophysics, 2015, 664: 244-255. doi: 10.1016/j.tecto.2015.09.022 [17] RICCIO S J, FITZGERALD P G, BENOWITZ J A, et al. The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier thrust fault region of the intracontinental strike-slip Denali fault system[J]. Tectonics, 2014, 33(11): 2195-2217. doi: 10.1002/2014TC003646 [18] HOLLINGSWORTH J, FATTAHI M, WALKER R, et al. Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia-Eurasia convergence in NE Iran since Oligocene[J]. Geophysical Journal International, 2010, 181(3): 1214-1246. doi: 10.1111/j.1365-246X.2010.04591.x [19] KRSTEKANIĆ N, MATENCO L, STOJADINOVIC U, et al. Strain partitioning in a large intracontinental strike-slip system accommodating backarc-convex orocline formation: The Circum-Moesian fault system of the Carpatho- Balkanides[J]. Global and Planetary Change, 2022, 208: 103714. doi: 10.1016/j.gloplacha.2021.103714 [20] NING Fei, YUN Jinbiao, ZHANG Zhongpei, et al. Deformation patterns and hydrocarbon potential related to intracratonic strike-slip fault systems in the east of central uplift belt in the Tarim Basin[J]. Energy Geoscience, 2022, 3(1): 63-72. doi: 10.1016/j.engeos.2021.10.008 [21] 马达德,陈琰,夏晓敏,等. 英东油田成藏条件及勘探开发关键技术[J]. 石油学报, 2019, 40(1): 115-130. doi: 10.7623/syxb201901010 MA Dade, CHEN Yan, XIA Xiaomin, et al. The discovery and key exploration and prospecting technology of Yingdong Oilfield in Qaidam Basin[J]. Acta Petrolei Sinica, 2019, 40(1): 115-130. doi: 10.7623/syxb2019-01010 [22] 付锁堂,马达德,陈琰,等. 柴达木盆地油气勘探新进展[J]. 石油学报, 2016, 37(S1): 1-10. FU Suotang, MA Dade, CHEN Yan, et al. New advance of petroleum and gas exploration in Qaidam Basin[J]. Acta Petrolei Sinica, 2016, 37(S1): 1-10. [23] 张猛. 断层相关褶皱的三维构造几何学分析[D]. 南京: 南京大学, 2014. ZHANG Meng. Three-dimensional structura geometry of fault-related folds[D]. Nanjing: Nanjing University, 2014. [24] 欧成华,陈伟,韩耀祖,等. 扎格罗斯盆地Buzurgan背斜斜向逆冲断裂褶皱的几何解析及运动学模拟[J]. 地球科学, 2016, 41(3): 385-393. doi: 10.3799/dqkx.2016.030 OU Chenghua, CHEN Wei, HAN Yaozu, et al. Geometric analysis and kinematic simulation of oblique-thrust faultrelated-fold of Buzurgan Anticline in Zagros Basin[J]. Earth Science, 2016, 41(3): 385-393. doi: 10.3799/dqkx.2016.030 [25] 张猛,贾东,王毛毛,等. 斜向逆冲断层相关褶皱的正演模型与实例分析[J]. 地质论评, 2013, 59(6): 1207-1217.doi: 10.16509/j.georeview.2013.06.026 ZHANG Meng, JIA Dong, WANG Maomao, et al. Forward modeling of oblique-thrust fault-related-folds and instances analysis[J]. Geological Review, 2013, 59(6): 1207-1217. doi: 10.16509/j.georeview.2013.06.026 [26] 梁晓宇,高树芳,高志成,等. 井震结合精细刻画英东油田断块油藏构造[J]. 测井技术, 2015, 39(2): 232-235. doi: 10.16489/j.issn.1004-1338.2015.02.02 LIANG Xiaoyu, GAO Shufang, GAO Zhicheng, et al. Finely describing fault oil reservoir construction with logging and seismic date in Yingdong Oilfield[J]. Well Logging Technology, 2015, 39(2): 232-235. doi: 10.16489/j.issn.1004-1338.2015.02.02 |
| [1] | 徐文圣, 孙耀玺, 刘奇广, 庞雄奇, 张虎. 主成分分析方法识别和评价碳酸盐岩有效储层[J]. 西南石油大学学报(自然科学版), 2025, 47(3): 25-36. |
| [2] | 李斌, 梁宇, 赵虎, 杨宏伟, 魏国华. 径向基多属性融合在滩坝砂体刻画中的应用[J]. 西南石油大学学报(自然科学版), 2025, 47(3): 37-47. |
| [3] | 曹树春, 刘飞, 卜范青, 齐明明, 管红. 西非下刚果盆地中新统深海水道构型样式及沉积过程[J]. 西南石油大学学报(自然科学版), 2025, 47(3): 65-75. |
| [4] | 熊昶, 赵星星, 吴江勇, 张新樵, 汪鹏. 塔中隆起F$_{\rm{{Ⅱ}}}$21断裂带油气成藏过程与多相态成因[J]. 西南石油大学学报(自然科学版), 2024, 46(4): 1-18. |
| [5] | 陈利新, 王胜雷, 万效国, 苏洲, 马兵山. 哈拉哈塘地区共轭走滑断裂差异特征及演化[J]. 西南石油大学学报(自然科学版), 2024, 46(4): 19-37. |
| [6] | 曾庆才, 王清华, 曾同生, 陈胜, 张凯. 基于测井修正的TTI伪弹性波逆时偏移优化方法[J]. 西南石油大学学报(自然科学版), 2024, 46(4): 38-50. |
| [7] | 杨凤来, 陈蓉, 周庆, 王俊, 代力. 油基泥浆下深层储层裂缝表征及有效性评价[J]. 西南石油大学学报(自然科学版), 2024, 46(4): 51-64. |
| [8] | 李国会, 郭越, 孙甲庆, 丁尧. 超深缝洞型碳酸盐岩储层精准定位技术探索实践[J]. 西南石油大学学报(自然科学版), 2024, 46(4): 65-73. |
| [9] | 张本健, 路俊刚, 张芮, 蒋奇君, 肖正录. 川中大安寨段页岩排烃效率及其勘探启示[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 15-25. |
| [10] | 王海考, 王淼, 于忠良, 余成林, 尹艳树. 游荡型辫状河沉积特征及沉积相模式[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 35-52. |
| [11] | 刘宏, 王双琴, 谭磊, 唐松, 陈聪. 川中龙女寺构造栖霞组薄储层预测地质模型[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 19-30. |
| [12] | 冯林杰, 蒋裕强, 曹脊翔, 杨长城, 宋林珂. 川中北部须家河组烃源岩测井解释及评价[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 31-42. |
| [13] | 罗安湘, 刘广林, 刘正鹏, 沈田丹, 马爽. 鄂尔多斯盆地中生界断裂及对油藏的控制研究[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 43-54. |
| [14] | 游君君, 雷明珠, 刘亿, 翟亚楠, 江黎. 珠三拗陷优质烃源岩地震相特征及分布预测[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 55-71. |
| [15] | 卞保力, 刘海磊, 蒋中发, 王学勇, 丁修建. 玛南斜坡风城组油气成藏条件及主控因素[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 72-84. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||