西南石油大学学报(自然科学版) ›› 2025, Vol. 47 ›› Issue (5): 121-133.DOI: 10.11885/j.issn.1674-5086.2024.01.08.01

• 石油与天然气工程 • 上一篇    下一篇

基于多维时序LSTM的超深井机械钻速预测方法

刘阳1,2, 陈思彤1, 向幸运3, 沈明华4, 马天寿2   

  1. 1. 西南石油大学机电工程学院, 四川 成都 610500;
    2. 油气藏地质及开发工程全国重点实验室·西南石油大学, 四川 成都 610500;
    3. 中国石化华北石油工程有限公司西部分公司, 新疆 轮台 841600;
    4. 中国石油川庆钻探工程有限公司钻采工程技术研究院, 四川 广汉 618300
  • 收稿日期:2024-01-08 发布日期:2025-11-04
  • 通讯作者: 刘阳,E-mail:liuyang2013swpu@163.com
  • 作者简介:刘阳,1989年生,男,汉族,甘肃平凉人,助理研究员,博士(后),主要从事油气井力学与控制工程、智能钻井理论与方法等方面的教学与科研工作。E-mail:liuyang2013swpu@163.com
    陈思彤,1999年生,男,汉族,四川成都人,硕士研究生,主要从事智能钻井与过程控制方面的研究。E-mail: 980953951@qq.com
    向幸运,1990年生,男,汉族,四川岳池人,高级工程师,主要从事特殊工艺井钻井理论与应用技术研究。E-mail: xiangxy.oshb@sinopec.com
    沈明华,1985年生,男,汉族,四川达州人,工程师,主要从事固井、欠平衡钻井以及井控工艺技术研究及应用。E-mail: shenmhu_gcy@cnpc.com.cn
    马天寿,1987年生,男,汉族,四川绵阳人,研究员,博士研究生导师,主要从事油气井工程教学与科研工作。E-mail: matianshou@126.com
  • 基金资助:
    国家自然科学基金青年基金(52204016);中国博士后科学基金面上项目(2020M673576XB);西南石油大学启航计划(2021QHZ027)

Prediction of Penetration Rate Method for Ultra-deep Well Based on Multi-dimensional Time Series LSTM

LIU Yang1,2, CHEN Sitong1, XIANG Xingyun3, SHEN Minghua4, MA Tianshou2   

  1. 1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    3. West Branch of Sinopec North China Petroleum Engineering Co. Ltd., Luntai, Xinjiang 841600, China;
    4. Drilling & Production Technology Research Institute, CCDC, Guanghan, Sichuan 618300, China
  • Received:2024-01-08 Published:2025-11-04

摘要: 为解决复杂深井钻井过程中机械钻速影响因素多、机理复杂且存在非线性、强耦合等特征的难题,提出了一种基于多维时序长短期记忆神经网络的机械钻速预测方法。根据新疆X-1井实际测录井数据,通过分析特征相关性和传统钻速方程的物理意义,优选工程参数、水力学参数、岩性参数和其他参数作为模型输入,分析多维特征在不同参数组合模式下的钻速预测效果。研究表明,机械钻速与转速、扭矩、立管压力呈正相关关系,与垂深、大钩载荷、比钻压、钻井液电导率、出口钻井液温度、出口排量、PDC可钻性极值呈负相关关系,与泵冲、钻井液密度相关性较弱;不同特征参数组合的机械钻速预测精度不同,其中,最优参数组合为比钻压、转速、扭矩、大钩载荷、立管压力、钻井液电导率、出口钻井液温度、出口排量、垂深、PDC可钻性极值,机械钻速预测的平均绝对误差为0.30 m/h,平均绝对百分比误差为11.35%,拟合优度为0.93;采用正交实验法确定了模型的最优超参数组合方案,预测效果提升较好,预测的绝对系数可提高0.06。

关键词: 超深井, 机械钻速, LSTM, 超参数组合, 正交实验

Abstract: In order to solve the problems of multiple factors, complex mechanism, nonlinear, strong coupling and other characteristics of rate of penetration in the process of complex deep drilling, this paper proposes a method of ROP prediction based on multi-dimensional time series long short-term memory neural network. Based on the actual logging data of Well X-1 in Xinjiang, this paper selects engineering parameters, hydraulics parameters, lithology parameters and other parameters as model inputs through the feature correlation analysis and the physical meaning of traditional ROP equation, and analyzes the ROP prediction effect of multi-dimensional features under different parameter combination modes. The results show that ROP is positively correlated with rotational speed, torque and riser pressure, but negatively correlated with vertical depth, hook load, specific weight on bit, drilling fluid conductivity, outlet drilling fluid temperature, outlet displacement and PDC drill ability, while weakly correlated with pump stroke and drilling fluid density; different characteristic parameter combinations have different prediction accuracy on ROP, among which the optimal parameter combinations are specific weight on bit, rotational speed, torque, hook load, riser pressure, drilling fluid conductivity, outlet drilling fluid temperature, outlet displacement, vertical depth and PDC drillability extreme value. MAE of ROP prediction is 0.30 m/h, MAPE is 11.35% and R2 is 0.93; The optimal hyperparameter combination scheme of the model was determined by orthogonal experiment. The R2 was increased by 0.06.

Key words: ultra-deep well, rate of penetration, LSTM, hyperparameter combination, orthogonal experiment

中图分类号: