[1] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1):45-57. doi:10.3969/j.issn.1672-7703.2020.01.005 LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development direction of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57. doi:10.3969/j.issn.1672- 7703.2020.01.005 [2] 孙腾飞,李永安,张杨,等. 基于多相压力波响应图版识别超深井气侵位置[J]. 中国石油大学学报(自然科学版), 2024, 48(2):83-91.doi:10.3969/j.issn.1673- 5005.2024.02.009 SUN Tengfei, LI Yongan, ZHANG Yang, et al. Identification of gas invasion location in ultra-deep wells based on multiphase pressure wave response chart[J]. Journal of China University of Petroleum (Edition of Natural Science),2024, 48(2):83-91. doi:10.3969/j.issn.1673-5005.2024.02.009 [3] 闵超,代博仁,张馨慧,等. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6):1-15. doi:10.11885/j.issn.1674- 5086.2020.06.05.03 MIN Chao, DAI Boren, ZHANG Xinhui, et al. Application progress of machine learning in oil and gas industry[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2020, 42(6):1-15. doi:10.11885/j.issn.1674-5086.2020.06.05.03 [4] MAURER W C. The "perfect-cleaning" theory of rotary drilling[J]. Journal of Petroleum Technology, 1962, 14(11):1270-1274. doi:10.2118/408-PA [5] WARREN T M. Penetration-rate performance of rollercone bits[J]. SPE Drilling Engineering, 1987, 2(1):9-18. doi:10.2118/13259-PA [6] BOURGOYNE A T, YOUNG F S. A multiple regression approach to optimal drilling and abnormal pressure detection[J]. SPE Journal, 1974, 14(4):371-384. doi:10.2118/4238-PA [7] HARELAND G, RAMPERSAD P R. Drag-bit model including wear[C]. SPE 26957-MS, 1994. doi:10.2118/26957-MS [8] DETOURNAY E, RICHARD T, SHEPHERD M. Drilling response of drag bits:Theory and experiment[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8):1347-1360. [9] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术, 2020, 48(1):1-8. doi:10.11911/syztjs.2020001 LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1):1-8. doi:10.11911/syztjs.2020001 [10] 王果,许博越. 理论模型与机器学习融合的PDC钻头钻速预测方法[J]. 石油钻探技术, 2024, 52(5):117-123. doi:10.11911/syztjs.2024094 WANG Guo, XU Boyue. The method to predict ROP of PDC bits based on fusion of theoretical model and machine learning[J]. Petroleum Drilling Techniques, 2024, 52(5):117-123. 10.11911/syztjs.2024094 [11] 王贺强,郭海涛,马翠岩,等. 智能钻井系统在赵东油田的应用[J]. 世界石油工业, 2024, 31(3):59-67. doi:10.20114/j.issn.1006-0030.20240319001 WANG Heqiang, GUO Haitao, MA Cuiyan, et al. Field application of automated drilling system in Zhaodong Oilfield[J]. World Petroleum Industry, 2024, 31(3):59-67. doi:10.20114/j.issn.1006-0030.20240319001 [12] OSSAI C I, DURU U I. Applications and theoretical perspectives of artificial intelligence in the rate of penetration[J]. Petroleum, 2022, 8(2):237-251. [13] AMER M M, DAHAB A S, EL-SAYED A A H. An ROP predictive model in nile delta area using artificial neural networks[C]. SPE 187969-MS, 2017. doi:10.2118/187969-MS [14] AHMED O S, ADENIRAN A A, SAMSURI A. Computational intelligence based prediction of drilling rate of penetration:A comparative study[J]. Journal of Petroleum Science and Engineering, 2019, 172:1-12. [15] ZHANG C, SONG X, SU Y, et al. Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks[J]. Journal of Petroleum Science and Engineering, 2022, 213:110396. [16] BRENJKAR E, DELIJANI E B. Computational prediction of the drilling rate of penetration (ROP):A comparison of various machine learning approaches and traditional models[J]. Journal of Petroleum Science and Engineering, 2022, 210:110033. [17] 李玥洋,任静思,张苏,等. 智能气田一体化模型数据共享平台建设与实践[J]. 西南石油大学学报(自然科学版), 2023, 45(1):155-162. doi:10.11885/j.issn.1674- 5086.2020.11.19.01 LI Yueyang, REN Jingsi, ZHANG Su, et al. Construction and application of intelligent gas field integrated model data sharing platform[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1):155-162. doi:10.11885/j.issn.1674-5086.2020.11.19.01 [18] 檀朝东,贺甲元,周彤,等. 基于PCA-BNN的页岩气压裂施工参数优化[J]. 西南石油大学学报(自然科学版), 2020, 42(6):56-62. doi:10.11885/j.issn.1674- 5086.2020.05.12.05 TAN Chaodong, HE Jiayuan, ZHOU Tong, et al. A study on the optimization of fracturing operation parameters based on PCA-BNN[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6):56-62. doi:10.11885/j.issn.1674-5086.2020.05.12.05 [19] 李元,刘雨田,冯立伟. 基于斯皮尔曼相关分析的非线性动态过程特征提取与故障检测[J]. 山东科技大学学报(自然科学版), 2023, 42(2):98-107. doi:10.16452/j.cnki.sdkjzk.2023.02.011 LI Yuan, LIU Yutian, FENG Liwei. Feature extraction and fault detection of non-linear dynamic process via Spearman correlation analysis[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2023, 42(2):98-107. doi:10.16452/j.cnki.sdkjzk.2023.02.011 [20] 侯勋,方刚. 基于肯德尔系数的改进ID3算法[J]. 科学技术创新, 2021(22):21-22. doi:10.3969/j.issn.1673- 1328.2021.22.011 HOU Xun, FANG Gang. Improved ID3 algorithm based on Kendall coefficient[J]. Science and Technology Innovation, 2021(22):21-22. doi:10.3969/j.issn.1673-1328.2021.22.011 [21] 葛亮,滕怡,肖国清,等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报(自然科学版), 2023, 45(2):126-134. doi:10.11885/j.issn.1674- 5086.2021.03.12.03 GE Liang, TENG Yi, XIAO Guoqing, et al. Research on overflow intelligent warning technology based on downhole annulus parameters[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(2):126-134. doi:10.11885/j.issn.1674-5086.2021.03.12.03 [22] 李春 生,邹林 浩,张可 佳,等. 基于 BP神经 网络 的录井异常数据检测方法研究[J]. 计算机技术与发展, 2022, 32(6):173-178. doi:10.3969/j.issn.1673- 629X.2022.06.029 LI Chunsheng, ZOU Linhao, ZHANG Kejia, et al. Research on abnormal data detection method of logging based on BP neural network[J]. Journal of Computer Technology and Development, 2022, 32(6):173-178. doi:10.3969/j.issn.1673-629X.2022.06.029 [23] LIU Xinkai, JI Lingyun, ZHANG Chen, et al. A method for reconstructing NDVI time-series based on envelope detection and the Savitzky-Golay filter[J]. International Journal of Digital Earth, 2022, 15(1):533-584. [24] 宋先知,姚学喆,李根生,等. 基于LSTM-BP神经网络的地层孔隙压力计算方法[J]. 石油科学通报, 2022, 7(1):12-23. doi:10.3969/j.issn.2096-1693.2022.01.002 SONG Xianzhi, YAO Xuezhe, LI Gensheng, et al. A novel method to calculate formation pressure based on the LSTM-BP neural network[J]. Petroleum Science Bulletin, 2022, 7(1):12-23. doi:10.3969/j.issn.2096-1693.2022.01.002 [25] 张鹏,杨涛,刘亚楠,等. 基于CNN-LSTM的QAR数据特征提取与预测[J]. 计算机应用研究, 2019, 36(10):2958-2961. doi:10.19734/j.issn.1001-3695.2018.04.0214 ZHANG Peng, YANG Tao, LIU Yanan, et al. Feature extraction and prediction of QAR data based on CNN-LSTM[J]. Application Research of Computers, 2019, 36(10):2958-2961. doi:10.19734/j.issn.1001-36- 95.2018.04.0214 [26] DAVTYAN A, RODIN A, MUCHNIK I, et al. Oil production forecast models based on sliding window regression[J]. Journal of Petroleum Science and Engineering, 2020, 195:107916. [27] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [28] SHAN L Q, LIU Y C, TANG M, et al. CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction[J]. Journal of Petroleum Science and Engineering, 2021, 205:108838. [29] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [30] 马乔雨,张欣,张春雷,等. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4):111-120. doi:10.12108/yxyqc.20210412 MA Qiaoyu, ZHANG Xin, ZHANG Chunlei, et al. Shear wave velocity prediction based on one-dimensional convolutional neural network[J]. Lithologic Reservoirs, 2021, 33(4):111-120. doi:10.12108/yxyqc.20210412 [31] 马天寿,向国富,石榆帆,等. 基于双向长短期记忆神经网络的水平地应力预测方法[J]. 石油科学通报, 2022, 7(4):487-504. doi:10.3969/j.issn.2096- 1693.2022.04.042 MA Tianshou, XIANG Guofu, SHI Yufan, et al. Horizontal in-situ stress prediction method based on the bidirectional long short-term memory neural network[J]. Petroleum Science Bulletin, 2022, 7(4):487-504. doi:10.3969/j.issn.2096-1693.2022.04.042 [32] 马天寿,张东洋,杨赟,等. 基于机器学习模型的斜井坍塌压力预测方法[J]. 天然气工业, 2023, 43(9):119-131. doi:10.3787/j.issn.1000-0976.2023.09.012 MA Tianshou, ZHANG Dongyang, YANG Yun, et al. Machine learning model based collapse pressure prediction method for inclined wells[J]. Natural Gas Industry, 2023, 43(9):119-131. doi:10.3787/j.issn.1000- 0976.2023.09.012 [33] 刘均荣,韩艳慧,王哲,等. 基于分布式光纤声波监测数据和机器学习的井筒流体类型识别方法[J]. 中国石油大学学报(自然科学版), 2023, 47(3):107-114. doi:10.3969/j.issn.1673-5005.2023.03.012 LIU Junrong, HAN Yanhui, WANG Zhe, et al. Identification of fluid type in wellbore based on distributed acoustic sensing data and machine learning[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3):107-114. doi:10.3969/j.issn.1673-50- 05.2023.03.012 [34] 刘学锋,张晓伟,曾鑫,等. 采用机器学习分割算法和扫描电镜分析页岩微观孔隙结构[J]. 中国石油大学学报(自然科学版), 2022, 46(1):23-33. doi:10.3969/j.issn.1673-5005.2022.01.003 LIU Xuefeng, ZHANG Xiaowei, ZENG Xin, et al. Pore structure characterization of shales using SEM and machine learning-based segmentation method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1):23-33. doi:10.3969/j.issn.1673- 5005.2022.01.003 [35] ZHANG P. A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model[J]. Applied Soft Computing, 2019, 85:105859. [36] 钟功祥,申伟,雷鹏燕,等. 基于正交实验的井下直线发电机设计与分析[J]. 西南石油大学学报(自然科学版), 2023, 45(3):154-162. doi:10.11885/j.issn.1674-5086.2020.11.06.01 ZHONG Gongxiang, SHEN Wei, LEI Pengyan, et al. Design and optimization analysis of downhole linear generator based on orthogonal test[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(3):154-162. doi:10.11885/j.issn.1674-5086.2020.11.06.01 |