西南石油大学学报(自然科学版) ›› 2025, Vol. 47 ›› Issue (6): 60-71.DOI: 10.11885/j.issn.1674-5086.2024.09.15.02

• 地质勘探 • 上一篇    下一篇

小样本条件下的深水海底扇岩石相智能分类

甄艳1,2, 刘小伟1,2, 张艺昊1,2, 赵珍3, 肖逸菲1,2, 赵晓明1,2   

  1. 1. 西南石油大学地球科学与技术学院, 四川 成都 610500;
    2. 天然气地质四川省重点实验室, 四川 成都 610500;
    3. 中国石化石油物探技术研究院有限公司, 江苏 南京 211103
  • 收稿日期:2024-09-15 发布日期:2026-01-12
  • 通讯作者: 甄艳,E-mail:zhenyan0824@163.com
  • 基金资助:
    四川省自然科学基金杰出青年科学基金项目(2024NSFJQ0065);四川省国际科技创新合作项目(24GJHZ0465)

Intelligent Classification of Deep-water Submarine Fan Lithofacies Based on Small Sample

ZHEN Yan1,2, LIU Xiaowei1,2, ZHANG Yihao1,2, ZHAO Zhen3, XIAO Yifei1,2, ZHAO Xiaoming1,2   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. Sichuan Province Key Laboratory of Natural Gas Geology, Chengdu, Sichuan 610500, China;
    3. Sinopec Geophysical Research Institute, Nanjing, Jiangsu 211103, China
  • Received:2024-09-15 Published:2026-01-12

摘要: 针对深水海底扇油气藏的勘探开发作业成本高、施工难度大、技术要求高,岩石取芯数量有限,因此获取的岩石相样本数量较少这一问题,提出了基于小样本的深水海底扇岩石相智能分类方法。首先,利用经验模态分解方法(EMD)和滑动窗口为每个井点构建多层图像样式作为输入;其次,利用长短时记忆网络(LSTM)和卷积神经网络(CNN)算法构建岩石相识别模型;再利用生成对抗网络(GAN)模型扩充少数类样本;最后,引入遗传算法(GA)优化模型参数。以西非尼日尔三角洲盆地Akpo油田为研究工区,利用此方法开展岩石相智能识别研究。研究表明,本文提出的GAN-GA-CNN模型对岩石相的分类准确率可达94.22%,相比原始的CNN模型的预测精度有很大提升,证明了本文所提方法的可行性。

关键词: 岩石相识别, 海底扇储层, 小样本, 深度学习, 遗传算法

Abstract: Aiming at the problems of high cost, difficulty in operation, high technical requirements, limited number of rock core-taking and small number of lithofacies samples obtained in the exploration and development of deep-water submarine fan reservoir, an intelligent classification method of deep-water submarine fan lithofacies based on small samples was proposed. First, the Empirical Mode Decomposition (EMD) and sliding window are used to construct multi-layer image styles input for each well point as inputs. Secondly, the lithofacies recognition model is constructed by using Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) algorithms. The Generative Adversarial Networks (GAN) model was used to expand a few class samples. Finally, a Genetic Algorithm (GA) was introduced to optimize the model parameters. Taking Akpo Oilfield in the Niger Delta Basin of West Africa as the research area, this method is used to carry out the intelligent identification of lithofacies. Research shows that the lithofacies classification accuracy of the GAN-GA-CNN model proposed in this paper can reach 94.22%, which greatly improves the prediction accuracy compared with the original CNN model, proving the feasibility of the proposed method.

Key words: lithofacies identification, submarine fan reservoir, small sample, deep learning, genetic algorithm

中图分类号: