[1] 罗平亚. 我国煤层气有效开发战略研究[M]. 北京:科学出版社, 2024. LUO Pingya. Research on effective development strategy of coalbed gas in China[M]. Beijing: Science Press, 2024. [2] 朱庆忠. 沁水盆地高煤阶煤层气高效开发关键技术与实践[J]. 天然气工业, 2022, 42(6): 87-96. doi: 10.3787/j.issn.1000-0976.2022.06.008 ZHU Qingzhong. Key technologies and practices for efficient development ofhigh-rank CBM in the Qinshui Basin[J]. Natural Gas Industry, 2022, 42(6): 87-96. doi: 10.3787/j.issn.1000-0976.2022.06.008 [3] 吴裕根,门相勇,娄钰. 我国“十四五”煤层气勘探开发新进展与前景展望[J]. 中国石油勘探, 2024, 29(1): 1-13. doi: 10.3969/j.issn.1672-7703.2024.01.001 WU Yugen, MEN Xiangyong, LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2024, 29(1): 1-13. doi: 10.3969/j.issn.1672-7703.2024.01.001 [4] 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业, 2022, 42(6): 1-18. doi: 10.3787/j.issn.1000-0976.2022.06.001 GAO Deli, BI Yansen, XIAN Baoan. Technical advances in well types and drilling & completion for high-efficient development of coalbed methane in China[J]. Natural Gas Industry, 2022, 42(6): 1-18. doi: 10.3787/j.issn.1000-0976.2022.06.001 [5] 闫涛滔,邓志宇,吴鹏,等. 鄂尔多斯盆地东缘临兴东区杨家坡区块煤层气井产能特征及主控因素[J]. 现代地质, 2024, 38(6): 1545-1556. doi: 10.19657/j.geoscience.1000-8527.2024.057 YAN Taotao, DENG Zhiyu, WU Peng, et al. Characteristics and key control factors of coalbed methane well productivity in the Yangjiapo Block, eastern Linxing District, Ordos Basin[J]. Geoscience, 2024, 38(6): 1545-1556. doi: 10.19657/j.geoscience.1000-8527.2024.057 [6] 张文,刘向君,梁利喜,等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术, 2023, 51(2): 37-45. doi: 10.11911/syztjs.2022094 ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling[J]. Petroleum Drilling Techniques, 2023, 51(2): 37-45. doi: 10.11911/syztjs.2022094 [7] 石秉忠,张栋,褚奇. 松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析[J]. 石油钻探技术, 2023, 51(1): 22-33. doi: 10.11911/syztjs.2023005 SHI Bingzhong, ZHANG Dong, CHU Qi. Micro digital analysis on instability form and mechanism of mudstone borehole wall in Songnan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(1): 22-33. doi: 10.11911/syztjs.2023005 [8] HUANG Fasheng, KANG Yili, LIU Hongyuan, et al. Critical conditions for coal wellbore failure during primary coalbed methane recovery: A case study from the San Juan Basin[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 4083-4099. doi: 10.1007/s00603-019-01825-5 [9] 曹文科,幸雪松,周长所,等. 渤中井壁坍塌失稳流固热化耦合模型及应用[J]. 西安石油大学学报(自然科学版), 2024, 39(5): 71-77, 84. doi: 10.3969/j.issn.1673-064X.2024.05.009 CAO Wenke, XING Xuesong, ZHOU Changsuo, et al. Fluid-solid-thermal-chemical coupling model for wellbore instability of directional wells in central Bohai Sea and its application[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(5): 71-77, 84. doi: 10.3969/j.issn.1673-064X.2024.05.009 [10] FAN Xiangyun, ZHANG Mingming, ZHANG Qiangui, et al. Wellbore stability and failure regions analysis of shale formation accounting for weak bedding planes in Ordos Basin[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103258. doi: 10.1016/j.jngse.2020.103258 [11] ZHANG Qiangui, RAN Jiawei, FAN Xiangyu, et al. Mechanical properties of basalt, tuff and breccia in the permian system of Sichuan Basin after water absorption implications for wellbore stability analysis[J]. Acta Geotechnica, 2023, 18(4): 2059-2080. doi: 10.1007/s11440-022-01670-x [12] FARZAD F, REZA S, PARVIZ M. Poroelastic analysis employing the finite element method to assess the effect of changes in the biot coefficient on oil well wall stability[J]. Indian Geotechnical Journal, 2023, 54(2): 394-406. doi: 10.1007/s40098-023-00773-w [13] WANG Daobing, QU Zhan, REN Zongxiao, et al. Numerical simulation on wellbore instability based on disturbance state concept[J]. Energies, 2022, 15: 6295. doi: 10.3390/en15176295 [14] WU Fan, QIN Yunping, ZHANG Fengjie, et al. Numerical simulation of deformation and failure mechanism of main inclined shaft in Yuxi Coal Mine, China[J]. Applied Sciences, 2022, 12(11): 5531. doi: 10.3390/app12115531 [15] 王跃鹏,孙正财,刘向君,等. 煤层割理结构及其对井壁稳定的影响研究[J]. 油气藏评价与开发, 2020, 10(4): 45-52. doi: 10.13809/j.cnki.cn32-1825/te.2020.04.007 WANG Yuepeng, SUN Zhengcai, LIU Xiangjun, et al. Study on cleat structure and its influence on wellbore stability in coal seams[J]. Reservoir Evaluation and Development, 2020, 10(4): 45-52. doi: 10.13809/j.cnki.cn32-1825/te.2020.04.007 [16] XU Hao, CAO Jifei, DONG Leifeng, et al. Study on wellbore stability of multilateral wells under seepage-stress coupling condition based on finite element simulation[J]. Processes, 2023, 11(6): 1651. doi: 10.3390/pr11061651 [17] 郭建春,任文希,曾凡辉,等. 非常规油气井压裂参数智能优化研究进展与发展展望[J]. 石油钻探技术, 2023, 51(5): 1-7. doi: 10.11911/syztjs.2023097 GUO Jianchun, REN Wenxi, ZENG Fanhui, et al. Unconventional oil and gas well fracturing parameter intelligent optimization: Research progressand future development prospects[J]. Petroleum Drilling Techniques, 2023, 51(5): 1-7. doi: 10.11911/syztjs.2023097 [18] 常海亮,杜春彦,张宏伟,等. 南华北盆地鹿邑凹陷上古生界煤系地层砂岩储层特征[J]. 现代地质, 2024, 38(2): 373-384. doi: 10.19657/j.geoscience.1000-8527.2023.102 CHANG Hailiang, DU Chunyan, ZHANG Hongwei, et al. Sandstone reservoir characteristics of the Upper Paleozoic coal-bearing strata in Luyi Sag, southern North China Basin[J]. Geoscience, 2024, 38(2): 373-384. doi: 10.19657/j.geoscience.1000-8527.2023.102 [19] 闫欣璐,唐书恒,傅小康,等. 含水层越流补给对煤层气井产能影响的数值模拟: 以柿庄南区块为例[J]. 现代地质, 2025, 39(4): 1143-1155. doi: 10.19657/j.geoscience.1000-8527.2024.130 YAN Xinlu, TANG Shuheng, FU Xiaokang, et al. Numerical simulation of the influence of aquifer overflow recharge on CBM productivity[J]. Geoscience, 2025, 39(4): 1143-1155. doi: 10.19657/j.geoscience.1000-8527. 2024.130 [20] 尹振宇,王瀚霖,耿雪玉. 岩土工程物理模型试验[J]. 浙江大学学报(工学版), 2022, 23(11): 845-850. doi: 10.1631/jzus.A22PMTGE YIN Zhenyu, WANG Hanlin, GENG Xueyu. Physical model testing in geotechnical engineering[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2022, 23(11): 845-850. doi: 10.1631/jzus.A22PMTGE [21] GAO Yabin, REN Jie. Study on the effect of borehole size on gas extraction borehole strength and failure mode[J]. ACS Omega, 2022, 7(29): 25635-25643. doi: 10.1021/acsomega.2c02834 [22] 范宜仁,吴俊晨,吴飞,等. 地层模块尺度下的新型钻井液侵入物理模拟系统[J]. 石油勘探与开发, 2017, 44(1): 125-129. doi: 10.11698/PED.2017.01.15 FAN Yiren, WU Junchen, WU Fei, et al. A new physical simulation system of drilling mud invasion in formation module[J]. Petroleum Exploration and Development, 2017, 44(1): 125-129. doi: 10.11698/PED.2017.01.15 [23] 欧建春,王恩元,徐文全,等. 钻孔施工诱发煤与瓦斯突出的机理研究[J]. 中国矿业大学学报, 2012, 41(5): 739-745. OU Jianchun, WANG Enyuan, XU Wenquan, et al. Study of the mechanism of coal and gas outburst induced by drilling[J]. Journal of China University of Mining & Technology, 2012, 41(5): 739-745. [24] SPIEZIA N, SALOMONI V A, MAJORANA C E. Plasticity and strain localization around a horizontal wellbore drilled through a porous rock formation[J]. International Journal of Plasticity, 2016, 78: 114-144. doi: 10.1016/j.ijplas.2015.10.013 [25] 张文雅,彭传利,张建梅,等. 宁武盆地山西太原组煤系页岩气储层勘探潜力探讨[J]. 中外能源, 2022, 27(12): 56-62. doi: 10.3969/j.issn.1673-579X.2022.12.zwny202212008 ZHANG Wenya, PENG Chuanli, ZHANG Jianmei, et al. Exploration potential of coal measure shale gas reservoirs in Shanxi-Taiyuan Formation, Ningwu Basin[J]. Sinoglobal Energy, 2022, 27(12): 56-62. doi: 10.3969/j.issn.1673-579X.2022.12.zwny202212008 [26] CHEN Shida, TANG Dazhen, TAO Shu, et al. In-situ stress, stress-dependent permeability, pore pressure and gas-bearing system in multiple coal seams in the Panguan Area, western Guizhou, China[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 110-122. doi: 10.1016/j.jngse.2017.10.009 [27] 白继峰. 武试5 井组煤层气钻井施工工艺[J]. 中国煤炭地质, 2009, 21(1): 49-52. doi: 10.3969/j.issn.1674-1803.2009.z1.016 BAI Jifeng. Wushi No.5 Well Group CBM well construction drilling technology[J]. Coal Geology of China, 2009, 21(1): 49-52. doi: 10.3969/j.issn.1674-1803.2009.z1.016 [28] ZHANG Qiangui, ZHAO Shilin, WANG Wensong, et al. Mechanical behaviors of coal surrounding horizontal wellbore during drilling process considering the effects of loading rate, pore pressure and temperature[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 28. doi: 10.1007/s40948-02300561-z [29] 张公社,李永康,尹俊禄,等. 沁水盆地煤层气井坍塌压力预测[J]. 石油钻采工艺, 2010, 32(4): 96-98. ZHANG Gongshe, LI Yongkang, YIN Junlu, et al. Prediction of collapse pressure for CBM wells in Qinshui CBM Fields[J]. Oil Drilling & Production Technology, 2010, 32(4): 96-98. [30] CHEN Yulin, LIU Zhou, XU Zuyan, et al. Research on the collapse pressure of an elliptical wellbore considering the effect of weak planes[J]. Energy Sources, 2020, 42(17): 2103-2119. doi: 10.1080/15567036.2019.1607929 [31] 张千贵,范翔宇,陈平,等. 井周煤层气渗流及恒压下煤岩力学特性试验[J]. 中国石油大学学报(自然科学版), 2015, 35(5): 97-101. doi: 10.3969/j.issn.1673-5005.2015.05.013 ZHANG Qiangui, FAN Xiangyu, CHEN Ping, et al. Experimental study on gas flow and mechanical behaviors of coalbed near borehole under constant flow and CBM pressures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 35(5): 97-101. doi: 10.3969/j.issn.1673-5005.2015.05.013 [32] 马天寿,张赟,邱艺,等. 基于可靠度理论的斜井井壁失稳风险评价方法[J]. 石油学报, 2021, 42(11): 1486-1498. doi: 10.7623/syxb202111008 MA Tianshou, ZHANG Yun, QIU Yi, et al. Risk evaluation method of borehole instability of deviated wells based on reliability theory[J]. Acta Petrolei Sinica, 2021, 42(11): 1486-1498. doi: 10.7623/syxb202111008 [33] 鞠玮,姜波,秦勇,等. 多煤层条件下现今地应力特征与煤层气开发[J]. 煤炭学报, 2020, 45(10): 3492-3500. doi: 10.13722/j.cnki.jccs.2019.1135 JU Wei, JIANG Bo, QIN Yong, et al. Characteristics of present-day in-situ stress field under multi-seam conditions: Implications for coalbed mthane development[J]. Journal of China Coal Society, 2020, 45(10): 3492-3500. doi:10.13722/j.cnki.jccs.2019.1135 [34] ABOOZAR G, YURI P S, YURI L R, et al. Numerical modeling of plastic deformation and failure around a wellbore in compaction and dilation modes[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2020, 44(6): 823-850. doi: 10.1002/nag.3041 [35] DU Kun, YANG Congren, SU Rui, et al. Failure properties of cubic granite, marble, and sandstone specimens under true triaxial stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104309. doi: 10.1016/j.ijrmms.2020.104309 [36] MA Xiaodong, RUDNICKI J W, HAIMSON B C. Failure characteristics of two porous sandstones subjected to true triaxial stresses: Applied through a novel loading path[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 2525-2540. doi: 10.1012/j.2016JB013637 [37] 张强,李诚,郭强,等. 指数型岩石真三轴强度准则[J]. 岩石力学与工程学报, 2018, 40(4): 625-633. doi: 10.11779/j.CJGE201804006 ZHANG Qiang, LI Cheng, GUO Qiang, et al. Exponential true triaxial strength criteria for rock[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 625-633. doi: 10.11779/j.CJGE201804006 |