[1] 罗群,姜振学,庞雄奇. 断裂控藏机理与模式[M]. 北京:石油工业出版社, 2007. LUO Qun, JIANG Zhenxue, PANG Xiongqi. Mechanism and model of fault controlling petroleum accumulation[M]. Beijing:Petroleum Industry Press, 2007. [2] 王柯,高崇龙,王剑,等. 准噶尔盆地南缘东段侏罗系—白垩系物源及其演化特征[J]. 吉林大学学报(地球科学版), 2022, 52(2):328-347. doi:10.13278/j.cnki.jjuese.20210122 WANG Ke, GAO Chonglong, WANG Jian, et al. Provenance and evolution characteristics of Jurassic-Cretaceous in eastern part of the southern margin of Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2):328-347. doi: 10.13278/j.cnki.jjuese.20210122 [3] 赵永强,云露,王斌,等. 塔里木盆地塔河油田中西部奥陶系油气成藏主控因素与动态成藏过程[J]. 石油实验地质,2021,43(5):758-766. doi:10.11781/sysydz202105758 ZHAO Yongqiang, YUN Lu, WANG Bin, et al. Main constrains and dynamic process of ordovician hydrocarbon accumulation, central and western Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(5):758-766. doi: 10.11781/sysydz202105758 [4] 马海陇,王震,邓光校,等. 塔里木盆地和田河东地区断裂特征及其油气地质意义[J]. 断块油气田, 2021, 28(3):329-334. doi:10.6056/dkyqt202103008 MA Hailong, WANG Zhen, DENG Guangxiao, et al. Fault features in eastern Hetianhe Area, Tarim Basin and its petroleum geological significance[J]. Fault-Block Oil and Gas Field, 2021, 28(3): 329-334. 10.6056/dkyqt202103008 [5] 宋金鹏,田盼盼,代俊杰,等. 塔里木盆地库车坳陷膏盐岩分布特征及油气地质意义[J]. 断块油气田, 2021, 28(6):800-804. doi:10.6056/dkyqt202106015 SONG Jinpeng, TIAN Panpan, DAI Junjie, et al. Distribution characteristics of gypsum-salt rock and petroleum geological significance in Kuqa Depression of Tarim Basin[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 800-804. doi: 10.6056/dkyqt202106015 [6] 孙哲,于海波,彭靖淞,等. 渤海湾盆地庙西中南洼围区原油成因类型及分布主控因素[J]. 吉林大学学报(地球科学版), 2021, 51(6):1665-1677. doi:10.13278/j.cnki.jjuese.20200308 SUN Zhe, YU Haibo, PENG Jingsong, et al. Genetic types and main controlling factors of crude oil distribution in south-central Miaoxi Depression of Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(6): 1665-1677. doi: 10.13278/j.cnki.jjuese.20200308 [7] 陈伟. 含油气盆地断裂带内部结构特征及其与油气运聚的关系[D]. 青岛:中国石油大学, 2011. doi:10.7666/d.y1877023 CHEN Wei. Internal structural characteristics of fault zones in oil-bearing basins and their relationship with hydrocarbon migration and accumulation[D]. Qingdao: China University of Petroleum, 2011. doi:10.7666/d.y1877023 [8] LI Jiaxue, LI Qinghui, LI Ning, et al. Ultra-high density oil-based drilling fluids laboratory evaluation and applications in ultra-HPHT reservoir[C]. SPE 196289-MS, 2020. doi: 10.2118/196289-MS [9] 李成,李伟,张文哲,等. 延长油田陆相页岩气复杂地层水基钻井液优化及应用[J]. 非常规油气, 2023, 10(1):130-138. doi:10.19901/j.fcgyq.2023.01.16 LI Cheng, LI Wei, ZHANG Wenzhe, et al. Optimization and application of water-based drilling fluid for complex formation of continental shale gas in Yanchang Oilfield[J]. Unconventional Oil & Gas, 2023, 10(1): 130-138. doi: 10.19901/j.fcgyq.2023.01.16 [10] 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用[J]. 断块油气田, 2021, 28(6):761-764. doi:10.6056/dkyqt202106008 SONG Hai, LONG Wu, DENG Xiongwei. Development and application of high temperature resistant and environmental protection lubricant for shale gas water-based drilling fluid[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 761-764. doi: 10.6056/dkyqt202106008 [11] SINDI R, PINO R, GADALLA A, et al. Achievement of maximum mud weights in wbm with micromax/barite blend and its successful implementation in deep HPHT challenging environment[C]. SPE 197594-MS, 2019. doi: 10.2118/197594-MS [12] LIU Jingping, DAI Zhiwen, XU Ke, et al. Water-based drilling fluid containing bentonite/poly (sodium 4-styrenesulfonate) composite for ultrahigh-temperature ultradeep drilling and its field performance[J]. Society of Petroleum Engineers, 2020, 25(3): 1193-1203. doi: 10.2118/199362-PA [13] 王维,韩金良,亓宗凯,等. 临汾区块煤系地层泥页岩防塌钻井液技术研究[J]. 非常规油气, 2023, 10(2):107-114. doi:10.19901/j.fcgyq.2023.02.15 WANG Wei, HAN Jinliang, QI Zongkai, et al. Study on anti sloughing drilling fluid technology of shale in coal measure stratain Linfen Block[J]. Unconventional Oil & Gas, 2023, 10(2): 107-114. doi: 10.19901/j.fcgyq.2023.02.15 [14] 钟志彬,李安洪,邓荣贵,等. 川中红层泥岩时效膨胀变形特性试验研究[J]. 岩石力学与工程学报, 2019, 38(1):76-86. doi:10.13722/j.cnki.jrme.2018.0861 ZHONG Zhibin, LI Anhong, DENG Ronggui, et al. Experimental study on the time-dependent swelling characteristics of red bed mudstone in central Sichuan[J]. Journal of Rock Mechanics and Engineering, 2019, 38(1): 76-86. doi: 10.13722/j.cnki.jrme.2018.0861 [15] 李成,李伟,王波,等. 微纳米孔缝封堵评价方法研究进展与展望[J]. 科技通报, 2023, 39(1):18-24, 31. doi:10.13774/j.cnki.kjtb.2023.01.003 LI Cheng, LI Wei, WANG Bo, et al. Research progress and prospect of micro-nano pore and fracture plugging evaluation methods[J]. Bulletin of Science and Technology, 2023, 39(1): 18-24, 31. doi: 10.13774/j.cnki.kjtb.2023.01.003 [16] 杜青才. 准噶尔南缘复杂构造地质力学分析与井下复杂机理研究[D]. 成都:西南石油学院, 2004. DU Qingcai. Geomechanical analysis of complex structure and underground complex mechanism of Junggar southern margin[D]. Chengdu: Southwest Petroleum Institute, 2004. [17] 李健,罗平亚. 准噶尔盆地南缘地区稳定井壁的钻井液技术[J]. 天然气工业, 1996, 16(1):39-42, 16. LI Jian, LUO Pingya. Drilling fluid technology for stabilizing borehole wall in the southern margin of Junggar Basin[J]. Natural Gas Industry, 1996, 16(1): 39-42, 16. [18] 马天寿,张东洋,杨赟, 等. 基于机器学习模型的斜井坍塌压力预测方法[J]. 天然气工业, 2023, 43(9):119-131. doi:10.3787/j.issn.1000-0976.2023.09.012 MA Tianshou, ZHANG Dongyang, YANG Yun, et al. Machine learning model based collapse pressure prediction method for inclined wells[J]. Natural Gas Industry, 2023, 43(9): 119-131. doi: 10.3787/j.issn.1000-0976.2023.09.012 [19] 徐生江,刘颖彪,戎克生,等. 准噶尔南缘膏泥岩地层井壁失稳机理[J]. 科学技术与工程, 2017, 17(28):194-199. doi:10.3969/j.issn.1671-1815.2017.28.034 XU Shengjiang, LIU Yingbiao, RONG Kesheng, et al. Mechanism of shaft wall instability in the paste mudstone formation at the southern margin of Junggar[J]. Science Technology and Engineering, 2017, 17(28): 194-199. doi:10.3969/j.issn.1671-1815.2017.28.034 [20] 许杰,刘海龙,张磊. 非均匀地应力条件下浅部泥岩井壁力化耦合作用分析[J]. 非常规油气, 2021, 8(4):99-105. doi:10.19901/j.fcgyq.2021.04.14 XU Jie, LIU Hailong, ZHANG Lei. Analysis of the coupling action of borehole wall for the shallow mudstone under the condition of non-uniform in-situ stress[J]. Unconventional Oil & Gas, 2021, 8(4): 99-105. doi: 10.19901/j.fcgyq.2021.04.14 [21] 许成元,张敬逸,康毅力,等. 裂缝封堵层结构形成与演化机制[J]. 石油勘探与开发, 2021, 48(1):202-210. doi:10.11698/PED.2021.01.19 XU Chengyuan, ZHANG Jingyi, KANG Yili, et al. Structural formation and evolution mechanisms of fracture plugging zone[J]. Petroleum Exploration and Development, 2021, 48(1): 202-210. doi: 10.11698/PED.2021.01.19 [22] 邱正松,刘均一,周宝义,等. 钻井液致密承压封堵裂缝机理与优化设计[J]. 石油学报, 2016, 37(S2):137-143. doi:10.7623/syxb2016S2017 QIU Zhengsong, LIU Junyi, ZHOU Baoyi, et al. Tight fracture-plugging mechanism and optimized design for plugging drilling fluid[J]. Acta Petroleum Sinica, 2016, 37(S2): 137-143. doi: 10.7623/syxb2016S2017 [23] 李怀科,张伟,郭磊,等. 承压封堵技术在深水井中的应用—以LS25-X井为例[J]. 非常规油气, 2017, 4(6):88-91. doi:10.3969/j.issn.2095-8471.2017.06.015 LI Huaike, ZHANG Wei, GUO Lei, et al. Application of wellbore strengthening technology in deepwater well Taking Well LS25-X as an example[J]. Unconventional Oil & Gas, 2017, 4(6): 88-91. doi: 10.3969/j.issn.2095-8471.2017.06.015 [24] 王京印. 泥页岩井壁稳定性力学化学耦合模型研究[D]. 青岛:中国石油大学, 2007. doi:10.7666/d.y1215036 WANG Jingyin. Chemical and mechanical modeling of borehole stability in shale[D]. Qingdao: China University of Petroleum, 2007. doi: 10.7666/d.y1215036 [25] XU Chengyuan, KANG Yili, YOU Lijun, et al. Highstrength, high-stability pill system to prevent lost circulation[C]. Beijing: International Petroleum Technology Conference, 2013. doi: 10.2523/IPTC-17127-MS [26] SAVARI S, WHITFILL D L. Managing lost circulation in highly fractured, vugular formations: Engineering the LCM design and application[C]. SPE 197186-MS, 2019. doi: 10.2118/197186-MS [27] MENEGBO E, CHARLES E, DOSUNMU A. Evaluation of cuttings transport in well annulus using power law model[C]. SPE 198825-MS, 2019. doi: 10.2118/198825-MS [28] SAHA S, GARIYA B, PANDA D, et al. Integration of 1D geomechanics modeling and high-performance waterbased mud HPWBM system design, improving costeffective drilling of high-angle wells through cauvery shale sequence: A case study from Cauvery Basin, offshore India[C]. SPE 194626-MS, 2019. doi: 10.2118/194-626-MS [29] TANG Wenquan, XIAO Chao, XUE Yuzhi, et al. Practices and understanding on the anti-sloughing drilling fluid technology of S Oilfield[C]. Beijing: International Petroleum Technology Conference, 2019. doi: 10.2523/IPTC19509-MS [30] TARAGHIKHAH S, MOHAMMADI M K, NOWTARKI K T. A new generation of independent temperature and pressure drilling fluids system with flat rheological properties, low invasion, higher shale stability and lubricity to replace oil based mud[C]. SPE 196311-MS, 2019. doi: 10.2118/196311-MS |