西南石油大学学报(自然科学版) ›› 2012, Vol. 34 ›› Issue (3): 71-77.

• 地质勘探 • 上一篇    下一篇

地震相裂缝分级技术在储层预测中的应用

汲生珍1,2,邬兴威2,夏东领2,王 萍2   

  1. 1. 中国地质大学(北京)能源学院,北京 海淀 100083;2. 中国石油化工股份有限公司石油勘探开发研究院,北京 海淀 100083
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-06-01 发布日期:2012-06-01

Application of Seismic Facies Technique for Fracture Classfication inReservoir Prediction

Ji Shengzhen1,2, Wu Xingwei2, Xia Dongling2, Wang Ping2   

  1. 1. School of Energy Resources,China University of Geoscience(Beijing),Haidian,Beijing 100083,China2. Petroleum Exploration and Production Research Institute,SINOPEC,Haidian,Beijing 100083,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-06-01 Published:2012-06-01

摘要:
要:如何预测碳酸盐岩裂缝储层一直是裂缝型油气藏勘探开发关注的重点。针对裂缝储层,目前常用地震反射倾
角、相干和最大曲率属性进行裂缝识别。地震反射倾角、相干属性通常用于检测大的断裂,最大曲率属性用于描述微
断裂体系。单一地震属性分析具有多解性,裂缝地震相分析技术将三者融合,通过聚类分析计算, 提取出与断裂、裂缝
相关的特征,对断裂–裂缝进行识别,并在地质尺度上进行分级,预测裂缝分布规律和发育程度。钻井、成像及动态资
料验证分析表明,该方法能识别出中东某油田目的层段 80% 的裂缝带,有效地解决了该油田裂缝型储层预测难题。

关键词: 关键词:裂缝分级, 地震相, 碳酸盐岩, 属性融合, 储层预测

Abstract: Abstract:Carbonatefracture reservoirpredictionisthe keypoint ofpetroleum exploration and production. At present,seismic
reflection dip,coherence and maximum curvature are the common attributes to predict fracture reservoir. Seismic reflection
dip and coherence attributes are used to detect faults and large fractures. Curvature attribute is usually used to describe the
fractures. While single seismic attribute usually has multiple solutions,seismic facies technique for fracture classification
integrates multiattributes by Clustering Analysis,which extracts the common features of the faults and fractures of the seismic
data. The faults and fractures are detected and classified by seismic facies classification. In order to verify the reliability of
the prediction,the results is further confirmed by drilling,MFI and dynamic data. This method is capable of detecting 80%
fractures of a Middle East oilfield in the target formations,which improved the success of the reservoir prediction greatly.

Key words: Key words:fracture classsfication, seismic facies, Carbonate, attributes integration, reservoir prediction