[1] 刘浩瀚. 特高含水期剩余油滴可动条件及水驱油效率变化机理研究[D]. 成都:西南石油大学, 2013. LIU Haohan. Study on remaining oil droplet dynamic conditions and water flood efficiency changing mechanisms in the ultra-high water cut period[D]. Chengdu:Southwest Petroleum University, 2013. [2] 李金蔓,霍宏博,胡勇,等. 特高含水期强非均质油藏剩余油研究新方法[J]. 辽宁石油化工大学学报,2019,39(6):43-47. doi:10.3969/j.issn.1672-6952.2019.06.008 LI Jinman, HUO Hongbo, HU Yong, et al. New research method for residual oil in strong heterogeneous reservoirs at extra ultra-high water cut stage[J]. Journal of Liaoning Shihua University, 2019, 39(6):43-47. doi:10.3969/j.issn.1672-6952.2019.06.008 [3] 刘美佳,周凤军,陈存良,等. 海上中轻质油藏产量预测新模型[J]. 石油化工应用, 2019, 38(3):9-12. doi:10.3969/j.issn.1673-5285.2019.03.003 LIU Meijia, ZHOU Fengjun, CHEN Cunliang, et al. A new model of predicting the output for offshore light oil reservoirs[J]. Petrochemical Industry Application, 2019, 38(3):9-12. doi:10.3969/j.issn.1673-5285.2019.03.003 [4] 侯春华. 基于长短期记忆神经网络的油田新井产油量预测方法[J]. 油气地质与采收率, 2019, 26(3):105-110. doi:10.13673/j.cnki.cn37-1359/te.2019.03.014 HOU Chunhua. New well oil production forecast method based on long-term and short-term memory neural network[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3):105-110. doi:10.13673/j.cnki.cn37-1359/te. 2019.03.014 [5] 周芸,周福建,冯连勇. 一种新型油气产量预测模型[J]. 大庆石油地质与开发, 2018, 37(5):76-80. doi:10.19597/J.ISSN.1000-3754.201711011 ZHOU Yun, ZHOU Fujian, FENG Lianyong. A new model for predicting oil ang gas production[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(5):76-80. doi:10.19597/J.ISSN.1000-3754.201711011 [6] 崔传智,吴忠维,李昱东,等. 应用PSO-改进GM (1, 1)模型预测油田产量[J]. 数学的实践与认识, 2018, 48(17):119-123. CUI Chuanzhi, WU Zhongwei, LI Yudong, et al. Application of the PSO-modified GM(1, 1) model in oilfield production forecast[J]. Mathematics in Practice and Theory, 2018, 48(17):119-123. [7] 陈东虎,朱维耀,朱华银,等. 应用广义回归神经网络预测油井含水率[J]. 重庆科技学院学报(自然科学版), 2012, 14(6):97-101. doi:10.19406/j.cnki. cqkjxyxbzkb.2012.06.026 CHEN Donghu, ZHU Weiyao, ZHU Huayin, et al. Using general regression neural networks method to predict water cut in oil well[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2012, 14(6):97-101. doi:10.19406/j.cnki.cqkjxyxbzkb.2012.06.026 [8] 王美石,陈祥光,李宇峰. 用于油田产量预测的多元线性回归和自回归模型[J]. 石油规划设计, 2005, 16(3):19-21. doi:10.3969/j.issn.004-2970.2005.03.007 WANG Meishi, CHEN Xiangguang, LI Yufeng. Multivariate linear regression and automatic regression models applied to output prediction of oilfield[J]. Petroleum Planning & Engineering, 2005, 16(3):19-21. doi:10.3969/j.issn.004-2970.2005.03.007 [9] 国亮. 改进多元线性回归模型在某油田产量预测中的应用[J]. 西安电子科技大学学报(社会科学版), 2009, 19(3):71-75. doi:10.16348/j.cnki.cn61-1336/c. 2009.03.005 GUO Liang. Application of improved multivariate linear regression to output prediction of an oilfield[J]. Journal of Xidian University (Social Science Edition), 2009, 19(3):71-75. doi:10.16348/j.cnki.cn61-1336/c.2009.03.005 [10] 陈武,吴焘宏,陈尘,等. 基于偏最小二乘回归分析的油田操作成本预测——以DX油田为例[J]. 西南石油大学学报(社会科学版), 2019, 21(1):8-13. doi:10.11885/j.issn.1674-5094.2018.09.26.03 CHEN Wu, WU Taohong, CHEN Chen, et al. Prediction of oilfield operation cost through partial least squares regression:A case study on DX Oilfield[J]. Journal of Southwest Petroleum University (Social Sciences Edition), 2019, 21(1):8-13. doi:10.11885/j.issn.1674-5094.2018.09.26.03 [11] 陈鹏宇. GM(1, 1)幂模型的改进及其在沉降预测中的应用[J]. 大地测量与地球动力学, 2020, 40(5):464-469. doi:10.14075/j.jgg.2020.05.005 CHEN Pengyu. Improvement of GM(1, 1) power model and its application settlement prediction[J]. Journal of Geodesy and Geodynamics, 2020, 40(5):464-469. doi:10.14075/j.jgg.2020.05.005 [12] 林旺,范洪富,王志平,等. 致密油藏体积压裂水平井产量预测研究[J]. 油气地质与采收率, 2018, 25(6):107-113. doi:10.13673/j.cnki.cn37-1359/te.2018.06.017 LIN Wang, FAN Hongfu, WANG Zhiping, et al. Prediction on production of volume fractured horizontal well in tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(6):107-113. doi:10.13673/j.cnki.cn37-1359/te.2018.06.017 [13] 李志强,赵金洲,胡永全,等. 致密油层多区体积压裂产能预测[J]. 油气地质与采收率, 2016, 23(1):134-138. doi:10.3969/j.issn.1009-9603.2016.01.022 LI Zhiqiang, ZHAO Jinzhou, HU Yongquan, et al. Productivity forecast of tight oil reservoirs after multi-zone stimulated reservoir volume fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(1):134-138. doi:10.3969/j.issn.1009-9603.2016.01.022 [14] YUE Ping, XIE Zhiwei, HUANG Siyuan, et al. The application of N2 huff and puff for IOR in fracture-vuggy carbonate reservoir[J]. Fuel, 2018, 234:1507-1517. doi:10.1016/j.fuel.2018.07.128 [15] LIU Zhibin, LIU Haohan. An effective method to predict oil recovery in high water cut stage[J]. Journal of Hydrodynamics, Ser. B, 2015, 27(6):988-995. doi:10.1016/S1001-6058(15)60561-3 [16] YUE Ping, CHEN Xiaofan, LIU Haohan, et al. The critical parameters of a horizontal well influenced by a semipermeable barrier considering thickness in a bottom water reservoir[J]. Journal of Petroleum Science and Engineering, 2015, 129:88-96. doi:10.1016/j.petrol.2015.02.029 [17] NEGASH B M, YAW A D. 基于人工神经网络的注水开发油藏产量预测[J]. 石油勘探与开发, 2020, 47(2):357365. doi:10.11698/PED.2020.02.14 NEGASH B M, YAW A D. Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection[J]. Petroleum Exploration and Development, 2020, 47(2):357-365. doi:10.11698/PED.2020.02.14 [18] YUE Ping, XIE Zhiwei, LIU Haohan, et al. Application of water injection curves for the dynamic analysis of fractured-vuggy carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 169:220-229. doi:10.1016/j.petrol.2018.05.062 [19] 张翼成,陈欣,杨红军,等. 基于组合特征的BP神经网络数字识别方法[J]. 计算机系统应用, 2013, 22(3):113-116. doi:10.3969/j.issn.1003-3254.2013.03.026 ZHANG Yicheng, CHEN Xin, YANG Hongjun, et al. Neural network digital characters recognition based on the combined feature[J]. Computer Systems & Applications, 2013, 22(3):113-116. doi:10.3969/j.issn.1003-3254.2013.03.026 [20] 宋明,李旭阳,曹宇光,等. 基于BP神经网络与小冲杆试验确定在役管道钢弹塑性性能方法研究[J]. 力学学报, 2020, 52(1):82-92. doi:10.6052/0459-1879-19-297 SONG Ming, LI Xuyang, CAO Yuguang, et al. Determination of elastoplastic properties of in-service pipeline steel based on BP neural network and small punch test[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1):82-92. doi:10.6052/0459-1879-19-297 [21] 邓聚龙. 灰色控制系统[J]. 华中工学院学报, 1982, 10(3):9-18. doi:10.13245/j.hust.1982.03.002 DENG Julong. The grey control system[J]. Journal of Central China Institute of Technology, 1982, 10(3):9-18. doi:10.13245/j.hust.1982.03.002 [22] 黄魁,苏春. 基于灰色神经网络组合模型的故障预测[J]. 系统工程与电子技术, 2020, 42(1):238-244. doi:10.3969/j.issn.1001-506X.2020.01.32 HUANG Kui, SU Chun. Failure prediction based on com-bined model of grey neural network[J]. Systems Engineering and Electronics, 2020, 42(1):238-244. doi:10.3969/j.issn.1001-506X.2020.01.32 [23] 花超. 基于灰色理论的铁路线路方案多目标优选分析及决策模型研究[J]. 铁道勘察, 2020(4):88-92. doi:10.19630/j.cnki.tdkc.201909090005 HUA Chao. Study on multi-objective optimal selection analysis and decision model of railway route schemes based on grey theory[J]. Railway Investigation and Surveying, 2020(4):88-92. doi:10.19630/j.cnki.tdkc. 201909090005 [24] 孙明明. 采油工程压裂增油技术措施研究[J]. 化工设计通讯, 2019, 45(2):51. doi:10.3969/j.issn.1003-6490.2019.02.046 SUN Mingming. Study technical measures for fracturing and oil increase in oil production engineering[J]. Chemical Engineering Design Communications, 2019, 45(2):51. doi:10.3969/j.issn.1003-6490.2019.02.046 [25] 范鹏,孟令为,杨学武,等. 高含水油田剩余油分布规律及挖潜效果评价[J]. 石油化工应用, 2020, 39(4):52-54, 62. doi:10.3969/j.issn.1673-5285.2020.04.012 FAN Peng, MENG Lingwei, YANG Xuewu, et al. Distribution law of remaining oil and evaluation of tapping potential effect[J]. Petrochemical Industry Application, 2020, 39(4):52-54, 62. doi:10.3969/j.issn.1673-5285.2020.04.012 [26] YUE Ping, JIA Bingyi, SHENG James, et al. A coupling model of water breakthrough time for a multilateral horizontal well in a bottom water-drive reservoir[J]. Journal of Petroleum Science and Engineering, 2019, 177:317-330. doi:10.1016/j.petrol.2019.02.033 [27] 刘浩瀚. 概率论与数理统计[M]. 北京:高等教育出版社, 2015:113-115. LIU Haohan. Probability theory and mathematical statistics[M]. Beijing:Higher Education Press, 2015:113-115. |