Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2022, Vol. 44 ›› Issue (4): 1-13.DOI: 10.11885/j.issn.1674-5086.2020.07.20.01
• GEOLOGY EXPLORATION • Next Articles
ZHAO Shengxian1, LIU Yong2, FENG Jiangrong1, FAN Cunhui3, JI Chunhai1
Received:
2020-07-20
Published:
2022-07-28
CLC Number:
ZHAO Shengxian, LIU Yong, FENG Jiangrong, FAN Cunhui, JI Chunhai. Brittleness Characteristics of Organic-rich Shale and Its Relationship with Fracture Development of Changning Area[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 1-13.
[1] 李新景, 胡素云, 程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发, 2007, 34(4):392-400. doi:10.3321/j.issn:1000-0747.2007.04.002 LI Xinjing, HU Suyun, CHENG Keming. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration & Development, 2007, 34(4):392-400. doi:10.3321/j.issn:1000-0747.2007.04.002 [2] 邹才能, 潘松圻, 荆振华, 等.页岩油气革命及影响[J].石油学报, 2020, 41(1):1-12. doi:10.7623/syxb202001001 ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1):1-12. doi:10.7623/syxb202001001 [3] 邱振, 邹才能, 王红岩, 等.中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素[J].天然气地球科学, 2020, 31(2):163-175. doi:10.11764/j.issn.1672-1926.2019.11.003 QIU Zhen, ZOU Caineng, WANG Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi Formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2):163-175. doi:10.11764/j.issn.1672-1926.2019.11.003 [4] GOODARZI M, ROUAINIA M, APLIN A C, et al. Predicting the elastic response of organic-rich shale using nanoscale measurements and homogenisation methods[J]. Geophysical Prospecting, 2017, 65(6):1597-1614. doi:10.1111/1365-2478.12475 [5] DAVIES R J, MATHIAS S A, MOSS J, et al. Hydraulic fractures:How far can they go?[J]. Marine and Petroleum Geology, 2012, 37(1):1-6. doi:10.1016/j.marpetgeo.2012.12.008 [6] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938. doi:10.1306/61EEDDBE-173E-11D7-8645000102C1865D [7] DANIEL J K R, MARC BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6):916-927. doi:10.1016/j.marpetgeo.2008.06.004 [8] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett Shale[C]. SPE 115258-MS, 2008. doi:10.2118/115258-MS [9] 赵金洲, 任岚, 胡永全.页岩储层压裂缝成网延伸的受控因素分析[J].西南石油大学学报(自然科学版), 2013, 35(1):1-9. doi:10.3863/j.issn.1674-5086.2013.01.001 ZHAO Jinzhou, REN Lan, HU Yongquan. Controlling factors of hydraulic fractures extending into network in shale formations[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(1):1-9. doi:10.3863/j.issn.1674-5086.2013.01.001 [10] ZHANG D, RANJITH P G, PERERA M S A. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing:A review[J]. Journal of Petroleum Science and Engineering, 2016, 143:158-170. doi:10.1016/j.petrol.2016.02.011 [11] RYBACKI E, MEIER T, DRESEN G. What controls the mechanical properties of shale rocks? Part II:Brittleness[J]. Journal of Petroleum Science and Engineering, 2016, 144:39-58. doi:10.1016/j.petrol.2016.02.022 [12] XIONG Fengyang, JIANG Zzhenxue, HUANG Hexin, et al. Mineralogy and gas content of Upper Paleozoic Shanxi and Benxi Shale Formations in Ordos Basin[J]. Energy& Fuels, 2019, 33(2):1061-1068. doi:10.1021/acs.energyfuels.8b04059 [13] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. doi:10.1306/12190606068 [14] NYGAARD R, GUTIERREZ M, BRATLI R K, et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks[J]. Marine and Petroleum Geology, 2006, 23(2):201-212. doi:10.1016/j.marpetgeo.2005.10.001 [15] WU Yusong, LI Xiao, HE Jianming, et al. Mechanical properties of Longmaxi black organic-rich shale samples from South China under Uniaxial and Triaxial compression states[J]. Energies, 2016, 9(12):24. doi:10.3390/en9121088 [16] GHOLAMI R, RASOULI V, SARMADIVALEH M, et al. Brittleness of gas shale reservoirs:A case study from the North Perth Basin, Australia[J]. Journal of Natural Gas Science and Engineering, 2016, 33:1244-1259. doi:10.1016/j.jngse.2016.03.013 [17] TARASOV B, POTVIN Y. Universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59:57-69. doi:10.1016/j.ijrmms.2012.12.011 [18] MENG Fanzhen, ZHOU Hui, ZHANG Chuanqing, et al. Evaluation methodology of brittleness of rock based on post-peak stress-strain curves[J]. Rock Mechanics and Rock Engineering, 2015, 48(5):1787-1805. doi:10.1007/s00603-014-0694-6 [19] HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10):389-392. doi:10.1016/0148-9062(74)91109-7 [20] ALTINDAG R. Correlation of specific energy with rock brittleness concepts on rock cutting[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2003, 103(3):163-171. doi:10.10520/AJA0038223X_2948 [21] ZHOU Hui, CHEN Jun, LU Jingjing, et al. A new rock brittleness evaluation index based on the internal friction angle and class I stress-strain curve[J]. Rock Mechanics and Rock Engineering, 2018, 51(3):2309-2316. doi:10.1007/s00603-018-1487-0 [22] RAHIMZADEH K I, AMERI M, MOLLADAVOODI H. Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J]. Journal of Petroleum Science and Engineering, 2018, 167:1-19. doi:10.1016/j.petrol.2018.03.061 [23] JIANG Yuqiang, CHEN Lei, QI Lin, et al. Characterization of the Lower Silurian Longmaxi marine shale in Changning Area in the South Sichuan Basin, China[J]. Geological Journal, 2018, 53(5):1656-1664. doi:10.1002/gj.2983 [24] 何治亮, 聂海宽, 张钰莹, 等.四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J].地学前缘, 2016, 23(2):8-17. doi:10.13745/j.esf.2016.02.002 HE Zhiliang, NIE Haikuan, ZHANG Yuying, et al. The main factors of shale gas enrichment of Ordovician Wufeng Formation Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2):8-17. doi:10.13745/j.esf.2016.02.002 [25] 冯子齐, 刘丹, 黄士鹏, 等.四川盆地长宁地区志留系页岩气碳同位素组成[J].石油勘探与开发, 2016, 43(5):705-713. doi:10.11698/PED.2016.05.05 FENG Ziqi, LIU Dan, HUANG Shipeng, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning Area, Sichuan Basin[J]. Petroleum Exploration & Development, 2016, 43(5):705-713. doi:10.11698/PED.2016.05.05 [26] 王玉满, 黄金亮, 王淑芳, 等.四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J].天然气地球科学, 2016, 27(3):423-432. doi:10.11764/j.issn.1672-1926.2016.03.0423 WANG Yuman, HUANG Jinliang, WANG Shufang, et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3):423-432. doi:10.11764/j.issn.1672-1926.2016.03.0423 [27] LABANI M M, REZAEE R. The importance of geochemical parameters and shale composition on rock mechanical properties of gas shale reservoirs:A case study from the Kockatea Shale and Carynginia Formation from the Perth Basin, Western Australia[J]. Rock Mechanics and Rock Engineering, 2015, 48(3):1249-1257. doi:10.1007/s00603-014-0617-6 [28] YUAN Yusong, JIN Zhijun, ZHOU Yan, et al. Burial depth interval of the shale brittle-ductile transition zone and its implications in shale gas exploration and production[J]. Petroleum Science, 2017, 14(4):637-647. doi:10.1007/s00603-014-0617-6 [29] 王玉满, 董大忠, 李新景, 等.四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J].天然气工业, 2015, 35(3):12-21. doi:10.3787/j.issn.1000-0976.2015.03.002 WANG Yuman, DONG Dazhong, LI Xinjing, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3):12-21. doi:10.3787/j.issn.1000-0976.2015.03.002 [30] 马新华, 谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发, 2018, 45(1):161-169. doi:10.11698/PED.2018.01.18 MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitationin Southern Sichuan Basin, NW China[J]. Petroleum Exploration & Development, 2018, 45(1):161-169. doi:10.11698/PED.2018.01.18 [31] 王玉满, 王淑芳, 董大忠.川南下志留统龙马溪组页岩岩相表征[J].地学前缘, 2016, 23(1):119-133. doi:10.13745/j.esf.2016.01.011 WANG Yuman, WANG Shufang, DONG Dazhong. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, Southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1):119-133. doi:10.13745/j.esf.2016.01.011 [32] MANJUNATH G L, JHA B. Geomechanical characterization of gondwana shale across nano-micro-meso scales[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119:35-45. doi:10.1016/j.ijrmms.2019.04.003 [33] 钟城, 秦启荣, 周吉羚, 等.现今地应力对富有机质页岩断层封闭性的研究——以川东南丁山地区龙马溪组为例[J].地质力学学报, 2018, 24(4):452-464. doi:10.12090/j.issn.1006-6616.2018.24.04.047 ZHONG Cheng, QIN Qirong, ZHOU Jiling, et al. Study on fault sealing of organic-rich shale by present stress:A case study of Longmaxi Formation in Dingshan Area, Southeast Sichuan[J]. Journal of Geomechanics, 2018, 24(4):452-464. doi:10.12090/j.issn.1006-6616.2018.24.04.047 [34] YIN Shuai, LÜ Dawei, JIN Lin, et al. Experimental analysis and application of the effect of stress on continental shale reservoir brittleness[J]. Journal of Geophysics and Engineering, 2018, 15(2):478-494. doi:10.1088/1742-2140/aaa5d2 [35] WANG Ruyue, DING Wenlong, ZHANG Yeqian, et al. Analysis of developmental characteristics and dominant factors of fractures in Lower Cambrian marine shale reservoirs:A case study of Niutitang Formation in Cen'gong Block, Southern China[J]. Journal of Petroleum Science and Engineering, 2016, 138:31-49. doi:10.1016/j.petrol.2015.12.004 [36] WANG F, GALE J. Screening criteria for shale-gas systems[J]. Gulf Coast Association of Geological Societies Transactions, 2009, 59:779-793. [37] 王玉满, 李新景, 董大忠, 等.海相页岩裂缝孔隙发育机制及地质意义[J].天然气地球科学, 2016, 27(9):1602-1610. doi:10.11764/j.issn.1672-1926.2016.09.1602 WANG Yuman, LI Xinjing, DONG Dazhong, et al. Development mechanism of fracture pores in marine shale and its geological significance[J]. Natural Gas Geoscience, 2016, 27(9):1602-1610. doi:10.11764/j.issn.1672-1926.2016.09.1602 [38] 高之业, 范毓鹏, 胡钦红, 等.川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J].石油科学通报, 2020, 5(1):1-16. GAO Zhiye, FAN Yupeng, HU Qinhong, et al. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the South Sichuan Basin[J]. Petroleum Science Bulletin, 2020, 5(1):1-16. [39] COWIE P, SCHOLZ C H. Displacement-length scaling relationship for faults:Data synthesis and discussion[J]. Journal of Structural Geology, 1992, 14(10):1149-1156. doi:10.1016/0191-8141(92)90066-6 [40] TEIXEIRA M G, DONZÉ F, RENARD F, et al. Microfracturing during primary migration in shales[J]. Tectonophysics, 2017, 694:268-279. doi:10.1016/j.tecto.2016.11.010 [41] HE Zhiliang, LI Shuangjian, NIE Haikuan, et al. The shale gas "sweet window":"The cracked and unbroken" state of shale and its depth range[J]. Marine and Petroleum Geology, 2019, 101:334-342. doi:10.1016/j.marpetgeo.2018.11.033 |
[1] | TANG Hongming, TANG Yuan, ZHENG Majia, LIU Jia, BIAN Yingying. An Experimental Study on Lamina and Fracture Mode of Shale [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 51-61. |
[2] | MA Xianlin, ZHOU Desheng, CAI Wenbin, LI Xianwen, HE Mingfang. An Interpretable Machine Learning Approach to Prediction Horizontal Well Productivity [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 81-90. |
[3] | LI Qinzhi, WEI Bing, YANG Huaijun, ZHAO Jinzhou, KADET Valeriy. Impact of Foam on the Permeability of Matrix-fracture Dual Systems and Evaluation Method [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 100-110. |
[4] | YANG Yong, LI Feng, ZHANG Wei, XIE Ribin, LI Xiaodong. The Mechanisms and Innovative Applications of Over-saturated Particles Well Completion Technique in Limestone Reservoir [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 129-138. |
[5] | LIU Yan. Integrated Sweets Spots Evaluation Technology for Tight Sandstone Gas Reservoirs in Zhongjiang Gas Field [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(3): 12-25. |
[6] | CHEN Chi, GUO Jianchun, LU Qianli, CI Jianfa. Research and Application of Multi-scale Support Mechanism in Tight Gas Reservoir [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(3): 131-138. |
[7] | ZOU Min, XIA Dongling, XIA Dongdong, PANG Wen. A Study on the Cause of Tight Sandstone Reservoir Heterogeneity [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(1): 41-52. |
[8] | SUN Lin, ZHANG Yongchang, WU Yijun, XIN Jun, PU Wanfen. Water Plugging Performance and Improvement of Preformed Particle Gel in Heterogenous Fractures [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(1): 151-157. |
[9] | DONG Shiming, GAN Zhiqiang, HUA Wen. An Experimental Study on Fracture Characteristic of Sandstone Subjected to Cyclic Wetting and Dryings [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 12-21. |
[10] | HUA Wen, PAN Xin, GAN Zhiqing, DONG Shiming. A Study on the Fracture Characteristics Analysis Based on the Generalized Maximum Tangential Strain Criterion [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 42-53. |
[11] | WANG Cunxin, XU Jiaxin, LI Yong, LI Gao, XIAO Dong. The Leakage Function of Gravity Displacement in the Narrow Safety Density Window [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 201-208. |
[12] | HUI Gang, CHEN Shengnan, WANG Hai, GU Fei. Application of Improved Residual Neural Network-based Machine Learning Method in the Prediction of Shale Gas Sweet Spot [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 19-32. |
[13] | SHENG Guanglong, HUANG Luoyi, ZHAO Hui, RAO Xiang, MA Jialing. Integrated Simulation Approach for Fracture Network Propagation and Gas Flow in Shale Gas Reservoirs [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 84-96. |
[14] | ZHANG Shoujiang, QIAO Hongjun, ZHANG Yongfei, CHEN Yiming, ZENG Fanhua. Transient Pressure Analysis of Vertical Well with Multi-wing Fractures [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 137-146. |
[15] | WANG Qiang, YUAN Heyi, LIU Yang, MI Guangyong, LUO Le. An Experimental Investigation on Pressure Bearing and Tight Plugging of Fractured Formations in Deep and Ultra-deep Wells [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 109-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||