[1] 刘晓燕. 特高含水期油气水管道安全混输界限确定及水力热力计算方法研究[D]. 大庆:大庆石油学院, 2005. LIU Xiaoyan. The limit confirming and hydraulic/thermodynamic calculation method research for oil-gas-water mixing transportation safe in pipeline during oil producing with supper high water cut[D]. Daqing: Daqing Petroleum Institute, 2005. [2] 何昭军,孙艳. 萨南油田集输系统节能技术[J]. 石油石化节能, 2017, 7(8): 36-38. doi: 10.3969/j.issn.2095-1493.2017.08.012 HE Zhaojun, SUN Yan. Energy saving technology of gathering and transportation system in Sa'nan Oilfield[J]. Energy Conservation and Measurement in Petroleum & Petrochemical Industry, 2017, 7(8): 36-38. doi: 10.3969/j. issn.2095-1493.2017.08.012 [3] 鲁晓醒,檀为建,胡雄翼,等. 高含水期原油低温集输黏壁特性实验[J]. 油气储运, 2019, 38(11): 1245-1250. doi: 10.6047/j.issn.1000-8241.2019.11.007 LU Xiaoxing, TAN Weijian, HU Xiongyi, et al. Experiment on wall sticking characteristics during the lowtemperature gathering and transportation of crude oil in the period of high water cut[J]. Oil & Gas Storage and Transportation, 2019, 38(11): 1245-1250. doi: 10.6047/j.issn.1000-8241.2019.11.007 [4] 张阳,宋晨,刘婕,等. 高含水期含气油井低温集输实验研究[J]. 石油规划设计, 2020, 31(1): 39-45. doi: 10.3969/j.issn.1004-2970.2020.01.010 ZHANG Yang, SONG Chen, LIU Jie, et al. Experimental research on low-temperature gathering and transportation of gas-bearing oil wells in high water-cut period[J]. Petroleum Planning & Engineering, 2020, 31(1): 39-45. doi: 10.3969/j.issn.1004-2970.2020.01.010 [5] 杨东海,鲁晓醒,刘书军,等. 高含水期高凝高黏原油低温集输特性[J]. 油气储运, 2022, 41(3): 311-317. doi: 10.6047/j.issn.1000-8241.2022.03.009 YANG Donghai, LU Xiaoxing, LIU Shujun, et al. Characteristics of low-temperature gathering of crude oil with high pour point and high viscosity in high water-cut period[J]. Oil & Gas Storage and Transportation, 2022, 41(3): 311-317. doi: 10.6047/j.issn.1000-8241.2022.03.009 [6] 张莹. 常温输送高含水稠油粘壁机理研究[D]. 北京:中国石油大学(北京), 2018. doi: 10.27643/d.cnki.gsybu.2018.000762 ZHANG Ying. Study on the sticking wall mechanism of high water-cut heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2018. doi: 10.27643/d.cnki.gsybu.2018.000762 [7] 宋承毅. 论“三高”原油不加热集油的影响因素[J]. 油气田地面工程, 1995, 14(1): 9-12. SONG Chengyi. Discussion on main affecting factors of 3-high type crude unheated gathering[J]. Oil-Gas Field Surface Engineering, 1995, 14(1): 9-12. [8] 吴迪,孙青峰,艾广智. 用转轮流动模拟器测定集油温度下限[J]. 油气田地面工程, 1999, 18(6): 3435. doi: 10.3969/j.issn.1006-6896.1999.06.017 WU Di, SUN Qingfeng, AI Guangzhi. Application of turning wheel flowing simulator in determination of oilgathering temperature limits[J]. Oil-Gasfield Surface Engineering, 1999, 18(6): 34-35. doi: 10.3969/j.issn.1006-6896.1999.06.017 [9] 王明信,赵力成,曾黎,等. 油气集输系统优化技术在大庆萨北油田的应用[J]. 石油规划设计, 2007, 18(3): 2022. doi: 10.3969/j.issn.1004-2970.2007.03.007 WANG Mingxin, ZHAO Licheng, ZENG Li, et al. Optimizing and adjusting technology for oil and gas gathering and transfer system applied in Sabei Oilfield[J]. Petroleum Planning & Engineering, 2007, 18(3): 20-22. doi: 10.3969/j.issn.1004-2970.2007.03.007 [10] 丁振军. 高含水、高粘、易凝原油单井不加热集油的边界条件的确定[D]. 北京:中国石油大学(北京), 2013. DING Zhenjun. Determination of the boundary conditions in the single well gathering system of high-water-cut, highly viscous, and high-gel-point crude oil without heating[D]. Beijing: China University of Petroleum (Beijing), 2013. [11] ZHENG Haimin, HUANG Qiyu, WANG Changhui, et al. Wall sticking of high water-cut, highly viscous and high gel-point crude oil transported at low temperatures[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(4): 20-29. [12] 韩善鹏,贾治渊,赵芸黎,等. 板北油田不加热集油问题研究[J]. 北京石油化工学院学报, 2018, 28(2): 56-60. doi: 10.12053/j.issn.1008-2565.2018.02.012 HAN Shanpeng, JIA Zhiyuan, ZHAO Yunli, et al. Study of the gathering pipelines unheated operation in Banbei Oilfield[J]. Journal of Beijing Institute of Petrochemical Technology, 2018, 28(2): 56-60. doi: 10.12053/j.issn.1008-2565.2018.02.012 [13] 李鸿英,贾治渊,韩善鹏,等. 高含水含蜡原油的粘壁特性试验[J]. 油气储运, 2020, 39(8): 898-906. doi:10.6047/j.issn.1000-8241.2020.08.008 LI Hongying, JIA Zhiyuan, HAN Shanpeng, et al. Test on wall-adhering behavior of high water-cut waxy crude oil[J]. Oil & Gas Storage and Transportation, 2020, 39(8): 898-906. doi: 10.6047/j.issn.1000-8241.2020.08.008 [14] 吕朝旭,邢晓凯,柯鲁峰. 多相流蜡沉积研究进展[J]. 油气田地面工程, 2018, 37(4): 36-41. doi: 10.3969/j.issn.1006-6896.2018.04.010 LÜ Zhaoxu, XING Xiaokai, KE Lufeng. Research progress of wax deposition of multiphase flow[J]. Oil-Gas Field Surface Engineering, 2018, 37(4): 36-41. doi: 10.3969/j.issn.1006-6896.2018.04.010 [15] RAJ G, LARKIN E, LESIMPLE A, et al. In situ monitoring of the inhibition of asphaltene adsorption by a surfactant on carbon steel surface[J]. Energy & Fuels, 2019, 33(3): 2030-2036. doi: 10.1021/acs.energyfuels.8b04246 [16] SANTOS R G D, MOHAMED R S, BANNWART A C, et al. Contact angle measurement and wetting behavior of inner surface of pipelines exposed to heavy crude oil and water[J]. Journal of Petroleum Science and Engineering, 2006, 51(1-2): 9-16. doi: 10.1016/j.petrol.2005.11.005 [17] BUCKLEY J S, LIU Y J. Some mechanisms of crude oil/brine/solid interactions[J]. Journal of Petroleum Science & Engineering, 1998, 20(3-4): 155-160. doi: 10.1016/S0920-4105(98)00015-1 [18] ABDALLAH W A, TAYLOR S D. Surface characterization of adsorbed asphaltene on a stainless-steel surface[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 258(1): 213-217. doi: 10.1016/j.nimb.2006.12.171 [19] RUDRAKE A, KARAN K, HORTON J H. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces[J]. Journal of Colloid and Interface Science, 2009, 332(1): 22-31. doi: 10.1016/j.jcis.2008.12.052 [20] HAI-SHAFIER S, GHOSH S, ROUSSEAU D. Kinetic stability and rheology of wax-stabilized water-in-oil emulsions at different water cuts[J]. Journal of Colloid and Interface Science, 2013, 410: 11-20. doi: 10.1016/j.jcis.2013.06.047 [21] SILVA R C R D, MOHAMED R S, BANNWART A C. Wettability alteration of internal surfaces of pipelines for use in transportation of heavy oil via core-flow[J]. Journal of Petroleum Science and Engineering, 2006, 51(1-2): 17-25. doi: 10.1016/j.petrol.2005.11.016 [22] CUI Yue, HUANG Qiyu, LV Yang, et al. Investigating the dynamical stability of heavy crude oil-water systems using stirred tank[J]. Journal of Petroleum Science & Engineering, 2019, 183: 106386. doi: 10.1016/j.petrol.2019.106386 [23] 任高阳. 流动条件下原油乳化含水率与温度及剪切作用关系的研究[D]. 北京:中国石油大学(北京), 2013. REN Gaoyang. Study on relation between emulsified water content of oil-water streams and shear effect as well as temperature[D]. Beijing: China University of Petroleum (Beijing), 2013. [24] 魏蕾. 高含水易凝高粘原油集油管道水力热力计算方法[D]. 北京:中国石油大学(北京), 2013. WEI Lei. Hydraulic and thermal calculation method of the waxy and high viscosity crude oil gathering pipeline in high water cut[D]. Beijing: China University of Petroleum (Beijing), 2013. [25] 张燕. 高含水原油低温特性及集油边界条件研究[D]. 北京:中国石油大学(北京), 2020. ZHANG Yan. Study on low temperature characteristics and low temperature gathering and transportation boundary conditions of high water-cut crude oil[D]. Beijing: China University of Petroleum (Beijing), 2020. [26] 龙震. 溶气含水原油流动性研究[D]. 北京:中国石油大学(北京), 2018. LONG Zhen. Study on flow characteristics of gassaturated crude oil and gas-saturated emulsion[D]. Beijing: China University of Petroleum (Beijing), 2018. [27] LÜ Yuling, HAN Jianwei, HE Limin, et al. Flow structure and pressure gradient of extra heavy crude oil solution CO2[J]. Experimental Thermal and Fluid Science, 2019, 104: 229-237. doi: 10.1016/j.expthermflusci.2019.02.022 [28] CHENG Xianwen, HUANG Qiyu, LI Yao, et al. The study on non-heating transportation of carbon dioxide flooding pipeline[C]. IPC 2020-9405, 2020. doi: 10.1115/IPC20209405 [29] WANG Wei, HUANG Qiyu, ZHENG Haimin, et al. Effect of wax on hydrate formation in water-in-oil emulsions[J]. Journal of Dispersion Science and Technology, 2020, 41(12): 1821-1830. doi: 10.1080/01932691.2019.1637751 [30] ALMAZROUEI M, ASAD O, ZAHRA M A. CO2 enhanced oil recovery system optimization for contractbased versus integrated operations[C]. Energy Procedia, 2017, 105: 4357-4362. doi: 10.1016/j.egypro.2017.03.927 [31] SI L V, BO H C. Effective prediction and management of a CO2 flooding process for enhancing oil recovery using artificial neural networks[J]. Journal of Energy Resources Technology, 2018, 140(3): 032906. doi: 10.1115/1.4038054 [32] MOHAMMED S, MANSOORI G A. The role of supercritical/dense CO2 gas in altering aqueous/oil interfacial properties: A molecular dynamics study[J]. Energy & Fuels, 2018, 32(2): 2095-2103. doi: 10.1021/acs.energyfuels.7b03863 [33] RUDYK S, SPIROV P, TYROVOLAS A. Effect of temperature on crude oil extraction by SC-CO2, at 40-70℃ and 40-60 MPa[J]. Journal of CO2 Utilization, 2018, 24: 471-478. doi: 10.1016/j.jcou.2018.02.009 [34] ZHANG Yan, GAO Mingwei, YOU Qing, et al. Smart mobility control agent for enhanced oil recovery during CO2 flooding in ultra-low permeability reservoirs[J]. Fuel, 2019, 241: 442-450. doi: 10.1016/j.fuel.2018.12.069 [35] REZK M G, FOROOZESH J. Phase behavior and fluid interactions of a CO2-light oil system at high pressures and temperatures[J]. Heliyon, 2019, 5(7): e02057. doi: 10.1016/j.heliyon.2019.e02057 [36] 廖翰农,丁志勇,廖翰明,等. CO2-EOR驱油技术实际应用浅析[J]. 石化技术, 2019, 26(8): 68-69, 71. LIAO Hannong, DING Zhiyong, LIAO Hanming, et al. Brief analysis on the practical application of CO2-EOR flooding technology[J]. Petrochemical Industry Technology, 2019, 26(8): 68-69, 71. [37] ZHANG Qi, ZUO Lili, WU Changchun, et al. The evolution and influence factors of CO2 flooding crude oil defoaming behavior after depressurization[J]. Journal of Petroleum Science and Engineering, 2021, 206(7): 108996. doi: 10.1016/j.petrol.2021.108996 [38] 陈涛平,陈鹏屹,孙文,等. 低渗透油层改善CO2驱 的实验研究[J]. 长江大学学报(自然科学版), 2022, 19(5): 45-50. doi: 10.3969/j.issn.1673-1409.2022.05.006 CHEN Taoping, CHEN Pengyi, SUN Wen, et al. Experimental study on improving CO2 flooding in low permeability reservoirs[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(5): 45-50. doi: 10.3969/j.issn.1673-1409.2022.05.006 [39] ORR F M, YU A D, LIEN C L. Phase behavior of CO2 and crude oil in low-temperature reservoirs[J]. Society of Petroleum Engineers Journal, 1981, 21(4): 480-492. doi: 10.2118/8813-PA [40] ORR F M, JENSEN C M. Interpretation of pressure composition phase diagrams for CO2/crude oil systems[J]. Society of Petroleum Engineers Journal, 1984, 24(5): 485-497. doi: 10.2118/11125-PA [41] 苏玉亮,张鸣远,侯洪宁,等. 水平管内气液两相泡状流壁面切应力的研究[J]. 西安交通大学学报, 2006, 40(5): 497-501. SU Yuliang, ZHANG Mingyuan, HOU Hongning, et al. Investigation on wall shear stress in horizontal air-water bubbly flows[J]. Journal of Xi'an Jiaotong University, 2006, 40(5): 497-501. [42] HERNANDEZ A, GONZALEZ L, GONZALEZ P. Experimental research on downward two-phase flow[C]. SPE 77504, 2002. doi: 10.2118/77504-MS [43] TAITEL Y, DUKLER A E. A theoretical approach to the Lockhart-Martinelli correlation for stratified flow[J]. International Journal of Multiphase Flow, 1976, 2(5-6): 591-595. doi: 10.1016/0301-9322(76)90019-7 [44] TAITEL Y, DUKLER A E. A model for predicting flow regime transitions in horizontal and near horizontal gasliquid flow[J]. AIChE Journal, 1976, 22(1): 47-55. |