[1] 张烈辉,罗程程,刘永辉,等. 气井积液预测研究进展[J]. 天然气工业, 2019, 39(1):57-63. doi: 10.3787/j.issn.1000-0976.2019.01.006 ZHANG Liehui, LUO Chengcheng, LIU Yonghui, et al. Research progress in liquid loading prediction of gas wells[J]. Natural Gas Industry, 2019, 39(1): 57-63. doi: 10.3787/j.issn.1000-0976.2019.01.006 [2] 伍坤一,张露露,林宇,等. 四川某气田集输管线积液影响规律研究[J]. 西南石油大学学报(自然科学版), 2024, 46(1):136-146. doi: 10.11885/j.issn.16745086.2022.07.23.01 WU Kunyi, ZHANG Lulu, LIN Yu, et al. A study on the law of liquid accumulation influence in southern Sichuan wet gas pipeline[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2024, 46(1): 136-146. doi: 10.11885/j.issn.1674-5086.2022.07.23.01 [3] 李金潮,邓道明,沈伟伟,等. 倾斜气井积液临界气相流速预测新模型[J]. 石油学报, 2022, 43(5):708-718. doi: 10.7623/syxb202205011 LI Jinchao, DENG Daoming, SHEN Weiwei, et al. A new prediction model of the critical gas velocity for liquid loading in deviated gas wells[J]. Acta Petrolei Sinica, 2022, 43(5): 708-718. doi: 10.7623/syxb202205011 [4] 刘通,周兴付,陈海龙,等. 毛细管泡沫排液采气工艺在低压、小液量水平井中的推广应用——以川西坳陷中浅层气藏为例[J]. 天然气工业, 2018, 38(6):83-90. doi: 10.3787/j.issn.1000-0976.2018.06.011 LIU Tong, ZHOU Xingfu, CHEN Hailong, et al. Popularization and application of capillary foam deliquification technology in horizontal wells with low pressures and low liquid production rates: A case study on middle-shallow gas reservoirs in the western Sichuan Depression[J]. Natural Gas Industry, 2018, 38(6): 83-90. doi: 10.3787/j.issn.1000-0976.2018.06.011 [5] 薛承文,谢文强,高涵,等. 旋流雾化排液采气工艺及其关键参数[J]. 天然气工业, 2018, 38(6):76-82. doi: 10.3787/j.issn.1000-0976.2018.06.010 XUE Chengwen, XIE Wenqiang, GAO Han, et al. Cyclone atomization based drainage gas recovery technology and its key parameters[J]. Natural Gas Industry, 2018, 38(6): 76-82. doi: 10.3787/j.issn.1000-0976.2018.06.010 [6] 杜殿发,赵艳武,张婧,等. 页岩气渗流机理研究进展及发展趋势[J]. 西南石油大学学报(自然科学版), 2017, 39(4):136-144. doi: 10.11885/j.issn.16745086.2015.12.24.04 DU Dianfa, ZHAO Yanwu, ZHANG Jing, et al. Progress and trends in shale gas seepage mechanism research[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(4): 136-144. doi: 10.11885/j.issn.1674-5086.2015.12.24.04 [7] 曹光强,姜晓华,李楠,等. 产水气田排水采气技术的国内外研究现状及发展方向[J]. 石油钻采工艺, 2019, 41(5):614-623. doi: 10.13639/j.odpt.2019.05.011 CAO Guangqiang, JIANG Xiaohua, LI Nan, et al. Domestic and foreign research status and development direction of drainage gas recovery technologies in water-producing gasfields[J]. Oil Drilling & Production Technology, 2019, 41(5): 614-623. doi: 10.13639/j.odpt.2019.05.011 [8] 王武杰,崔国民,魏耀奇,等. 倾斜气井临界携液流速预测新模型[J]. 石油勘探与开发, 2021, 48(5):1053-1060. doi: 10.11698/PED.2021.02.17 WANG Wujie, CUI Guomin, WEI Yaoqi, et al. A new model for predicting the critical liquid-carrying velocity in inclined gas wells[J]. Petroleum Exploration and Development, 2021, 48(5): 1053-1060. doi: 10.11698/PED.2021.02.17 [9] LEA J F, NICKENS H V, WELLS M R. Gas well deliquification[M]. Amsterdam: Elsevier Press, 2003. [10] 刘永辉,吴朋勃,罗程程,等. 泡沫排水采气适用界限的实验研究[J]. 深圳大学学报(理工版), 2020, 37(5):490-496. doi: 10.3724/SP.J.1249.2020.05490 LIU Yonghui, WU Pengbo, LUO Chengcheng, et al. Experimental study on the applicable range of surfactant injection technology[J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(5): 490-496. doi: 10.3724/SP.J.1249.2020.05490 [11] 王旭. 川西中浅层气藏泡沫排水采气工艺技术研究与应用[J]. 钻采工艺, 2020, 43(2):70-71. doi: 10.3969/J.ISSN.1006-768X.2020.02.18 WANG Xu. Research and application of technology of gas recovery by foam drainage in shallow-middle gas reservoir in western Sichuan[J]. Drilling & Production Technology, 2020, 43(2): 70-71. doi: 10.3969/J.ISSN.1006768X.2020.02.18 [12] 王旭,鲁光亮,罗程程,等. 油-气-水三相流水平井携液临界气量计算方法[J]. 西南石油大学学报(自然科学版), 2022, 44(3):167-175. doi: 10.11885/j.issn.16745086.2022.01.26.03 WANG Xu, LU Guangliang, LUO Chengcheng, et al. Method for calculating critical liquid carrying flow rate of oil-gas-water three-phase horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(3): 167-175. doi: 10.11885/j.issn.1674-5086.2022.01.26.03 [13] 胡之牮,金子一,张小涛,等. 页岩气水平井全井段临界携液流量计算模型[J]. 天然气勘探与开发, 2024, 47(6):18-24. doi: 10.12055/gaskk.issn.16733177.2024.06.003 HU Zhijian, JIN Ziyi, ZHANG Xiaotao, et al. A calculation model for critical liquid-carrying flow rate of shale gas horizontal well section[J]. Natural Gas Exploration and Development, 2024, 47(6): 18-24. doi: 10.12055/gaskk.issn.1673-3177.2024.06.003 [14] 黄全华,黄智程,杨亚涛,等. 高气液比水平井临界携液流量预测新模型[J]. 断块油气田, 2024, 31(5):843-850. doi: 10.6056/dkyqt202405012 HUANG Quanhua, HUANG Zhicheng, YANG Yatao, et al. A new model for predicting critical fluid-carrying flow rate in horizontal wells with high gas-liquid ratio[J]. FaultBlock Oil and Gas Field, 2024, 31(5): 843-850. doi: 10.6056/dkyqt202405012 [15] 翟中波,陈刚,朱智贤,等. 邻井气举辅助泡沫排水采气工艺起效时间探究[J]. 天然气勘探与开发, 2024, 47(2):68-72. doi: 10.12055/gaskk.issn.16733177.2024.02.008 ZHAI Zhongbo, CHEN Gang, ZHU Zhixian, et al. Onset time of lift-assisted foam drainage gas recovery in adjacent wells[J]. Natural Gas Exploration and Development, 2024, 47(2): 68-72. doi: 10.12055/gaskk.issn.1673-3177.2024.02.008 [16] 潘杰,王武杰,魏耀奇,等. 考虑液滴形状影响的气井临界携液流速计算模型[J]. 天然气工业, 2018, 38(1):67-73. doi: 10.3787/j.issn.1000-0976.2018.01.008 PAN Jie, WANG Wujie, WEI Yaoqi, et al. A calculation model of critical liquid-carrying velocity of gas wells considering the influence of droplet shapes[J]. Natural Gas Industry, 2018, 38(1): 67-73. doi: 10.3787/j.issn.1000-0976.2018.01.008 [17] 潘杰,王武杰,王亮亮,等. 考虑液滴夹带的气井连续携液预测模型[J]. 石油学报, 2019, 40(3):332-336. doi: 10.7623/syxb201903007 PAN Jie, WANG Wujie, WANG Liangliang, et al. A prediction model for continuous liquid-carrying in gas wells considering droplet entrainment[J]. Acta Petrolei Sinica, 2019, 40(3): 332-336. doi: 10.7623/syxb201903007 [18] 王其伟. 多级孔板提高井筒气体携液能力实验研究[J]. 西南石油大学学报(自然科学版), 2020, 42(1):78-83. doi: 10.11885/j.issn.1674-5086.2018.07.24.01 WANG Qiwei. An experimental study on improving the liquid-carrying capacity of wellbore gas by a multistage orifice[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(1): 78-83. doi: 10.11885/j.issn.1674-5086.2018.07.24.01 [19] BELFROID S, SCHIFERLI W, ALBERTS G, et al. Predicting onset and dynamic behavior of liquid loading gas wells[C]. SPE 115567-MS, 2008. doi: 10.2118/115567MS [20] LUO S, KELKAR M, PEREYRA E, et al. A new comprehensive model for predicting liquid loading in gas wells[J]. SPE Production & Operations, 2014, 29(4): 337-349. doi: 10.2118/172501-PA [21] 刘永辉,艾先婷,罗程程,等. 预测水平井携液临界气流速的新模型[J]. 深圳大学学报(理工版), 2018, 35(6):551-557. doi: 10.3724/SP.J.1249.2018.06551 LIU Yonghui, AI Xianting, LUO Chengcheng, et al. A new model for predicting critical gas velocity of liquid loading in horizontal well[J]. Journal of Shenzhen University (Science & Engineering), 2018, 35(6): 551-557. doi: 10.3724/SP.J.1249.2018.06551 [22] LIU Yonghui, LUO Chengcheng, ZHANG Liehui, et al. Experimental and modeling studies on the prediction of liquid loading onset in gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 57: 349-358. doi: 10.1016/j.jngse.2018.07.023 [23] WALTRICH P J, PASADA C, MARTINEZ J, et al. Experimental investigation on the prediction of liquid loading initiation in gas wells using a long vertical tube[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1515-1529. doi: 10.1016/j.jngse.2015.06.023 [24] 刘通,郭新江,王雨生,等. 川西积液水平井井筒压力及液位预测[J]. 石油钻采工艺, 2017, 39(1):97-102. doi: 10.13639/j.odpt.2017.01.019 LIU Tong, GUO Xinjiang, WANG Yusheng, et al. Borehole pressure and liquid level prediction of liquid-loading horizontal wells in west Sichuan[J]. Oil Drilling & Production Technology, 2017, 39(1): 97-102. doi: 10.13639/j.odpt.2017.01.019 [25] WALLIS G B. One-dimensional two-phase flow[M]. 1st Ed. New York: McGraw-Hill, 1969. [26] TURNER R G, HUBBARD M G, DUKLER A E. Analysis and prediction of minimum flow rate for the continuous removal of liquid from gas wells[J]. Journal of Petroleum Technology, 1969, 21(11): 1475-1482. doi: 10.2118/2198PA [27] SUTTON R P, COX S A, LEA J F, et al. Guidelines for the proper application of critical velocity calculations[J]. SPE Production & Operations, 2010, 25(2): 182-194. doi: 10.2118/120625-PA [28] COLEMAN S B, CLAY H B, MCCURDY D G, et al. A new look at predicting gas-well load-up[J]. Journal of Petroleum Technology, 1991, 43(3): 329-333. doi: 10.2118/20280-PA |