[1] 李登华,张国生,黄金亮,等. 四川盆地下寒武统筇竹寺组页岩气储层特征与勘探潜力[C]. 北京:第八届中国含油气系统与油气藏学术会议, 2015. LI Denghua, ZHANG Guosheng, HUANG Jinliang, et al. Shale reservoir characteristics and exploration potential of the Lower Cambrian Qiongzhusi Formation in Sichuan Basin[C]. Beijing: the 8th China Petroliferous System and Reservoir Academic Conference, 2015. [2] 聂海宽,张金川,李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6): 959-967. doi: 10.7623/syxb201106005 NIE Haikuan, ZHANG Jinchuan, LI Yuxi. Accumulation conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2011, 32(6): 959-967. doi: 10.7623/syxb201106005 [3] 梁兴,张廷山,杨洋,等. 滇黔北地区筇竹寺组高演化页岩气储层微观孔隙特征及其控制因素[J]. 天然气工业, 2014, 34(2): 18-26. doi: 10.3787/j.issn.1000-0976.2014.02.003 LIANG Xing, ZHANG Tingshan, YANG Yang, et al. Microscopic pore structure and its controlling factors of overmature shale in the Lower Cambrian Qiongzhusi Fm, northern Yunnan and Guizhou provinces of China[J]. Natural Gas Industry, 2014, 34(2): 18-26. doi: 10.3787/j.issn.1000-0976.2014.02.003 [4] 刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. doi: 10.3969/j.issn.1671-9727.2013.05.03 LIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520. doi: 10.3969/j.issn.1671-9727.2013.05.03 [5] 李伟,刘静江,邓胜徽,等. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用[J]. 石油学报, 2015, 36(5): 546-556. doi: 10.7623/syxb201505003 LI Wei, LIU Jingjiang, DENG Shengwei, et al. The nature and role of Late Sinian-Early Cambrian tectonic movement in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(5): 546-556. doi: 10.7623/syxb-201505003 [6] 黄福喜,陈洪德,侯明才,等. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式[J]. 岩石学报, 2011, 27(8): 2299-2317. HUANG Fuxi, CHEN Hongde, HOU Mingcai, et al. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian (Cambrian-Silurian)[J]. Acta Petrologica Sinica, 2011, 27(8): 2299-2317. [7] 程建,郑伦举. 川南地区金页1 井早寒武世烃源岩沉积地球化学特征[J]. 石油与天然气地质, 2020, 41(4): 800810. doi: 10.11743/ogg20200413 CHENG Jian, ZHENG Lunju. Sedimentary geochemical characteristics of the Early Cambrian source rocks in Well Jinye 1 in southern Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(4): 800-810. doi: 10.11743/ogg20200413 [8] 燕继红,李启桂,朱祥. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向[J]. 石油实验地质, 2016, 38(4): 445-452. doi: 10.11781/sysydz201604445 YAN Jihong, LI Qigui, ZHU Xiang. Main factors controlling shale gas accumulation and exploration targets in the Lower Cambrian, Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2016, 38(4): 445-452. doi: 10.11781/sysydz201604445 [9] 蒋珊,王玉满,王书彦,等. 四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J]. 天然气工业, 2018, 38(10): 19-27. doi: 10.3787/j.issn.1000-0976.2018.10.003 JIANG Shan, WANG Yuman, WANG Shuyan, et al. Distribution prediction of graphitized organic matter areas in the Lower Cambrian Qiongzhusi shale in the central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 19-27. doi: 10.3787/j.issn.1000-0976.2018.10.003 [10] 张钰莹,何治亮,高波,等. 上扬子区下寒武统富有机质页岩沉积环境及其对有机质含量的影响[J]. 石油实验地质, 2017, 39(2): 154-161. doi: 10.11781/sysydz-201702154 ZHANG Yuying, HE Zhiliang, GAO Bo, et al. Sedimentary environment of the Lower Cambrian organic-rich shale and its influence on organic content in the Upper Yangtze[J]. Petroleum Geology & Experiment, 2017, 39(2): 154-161. doi: 10.11781/sysydz201702154 [11] CHEN Lei, JIANG Zhenxue, LIU Keyu, et al. Effect of lithofacies on gas storage capacity of marine and continental shales in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineeringg, 2016, 36(1): 773-785. doi: 10.1016/j.jngse.2016.11.024 [12] ZHANG Qin, WU Xinsong, RADWAN A E, et al. Diagenesis of continental tight sandstone and its control on reservoir quality: A case study of the Quan 3 Member of the Cretaceous Quantou Formation, Fuxin Uplift, Songliao Basin[J]. Marine and Petroleum Geology, 2022, 145: 105883. doi: 10.1016/j.marpetgeo.2022.105883 [13] CHEN Hongsong, ZHANG Yongpeng, CAO Yongrui, et al. Security issues and defensive approaches in deep learning frameworks[J]. Tsinghua Science and Technology, 2021, 26(6): 894-905. doi: 10.26599/TST.2020.9010050 [14] RADWAN A E, WOOD D A, RADWAN A A. Machine learning and data-driven prediction of pore pressure from geophysical logs: A case study for the Mangahewa Gas Field, New Zealand[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 1799-1809. doi: 10.1016/j.jrmge.2022.01.012 [15] FENG S K, XIE R C, AHMED E R, et al. Accurate determination of water saturation in tight sandstone gas reservoirs based on optimized Gaussian process regression[J]. Marine and Petroleum Geology, 2023, 150: 106149. doi: 10.1016/j.marpetgeo.2023.106149 [16] ELHAIJA W A, AL-HAIJA Q A. A novel dataset and lightweight detection system for broken bars induction motors using optimizable neural networks[J]. Intelligent Systems with Applications, 2023, 17: 200167. doi: 10.1016/j.iswa.2022.200167 [17] 刘树根,孙玮,宋金民,等. 四川盆地海相油气分布的构造控制理论[J]. 地学前缘, 2015, 22(3): 146-160. doi: 10.13745/j.esf.2015.03.013 LIU Shugen, SUN Wei, SONG Jinmin, et al. Tectonics controlled distribution of marine petroleum accumulations in the Sichuan Basin, China[J]. Earth Science Frontiers, 2015, 22(3): 146-160. doi: 10.13745/j.esf.2015.03.013 [18] 王玉满,董大忠,程相志,等. 海相页岩有机质碳化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业, 2014, 34(8): 1-7. doi: 10.3787/j.issn.1000-0976.2014.08.001 WANG Yuman, DONG Dazhong, CHENG Xiangzhi, et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case of the Lower Cambrian Qiongzhusi Shale in southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 1-7. doi: 10.3787/j.issn.1000-0976.2014.08.001 [19] 熊亮,邓虎成,吴冬,等. 四川盆地及其周缘下寒武统筇竹寺组细粒沉积特征与影响因素[J]. 石油实验地质, 2023, 45(5): 857-871. doi: 10.11781/sysydz202305857 XIONG Liang, DENG Hucheng, WU Dong, et al. Finegrained sedimentary characteristics and influencing factors of the Lower Cambrian Qiongzhusi Formation in Sichuan Basin and on its periphery[J]. Petroleum Geology & Experiment, 2023, 45(5): 857-871. doi: 10.11781/sysydz-202305857 [20] 张天怡,黄士鹏,李贤庆,等. 四川盆地下寒武统筇竹寺组沉积地球化学特征与有机质富集机制[J]. 天然气地球科学, 2024, 35(4): 688-703. doi: 10.11764/j.issn.1672-1926.2023.09.016 ZHANG Tianyi, HUANG Shipeng, LI Xianqing, et al. Sedimentary geochemical characteristics and organic matter enrichment of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(4): 688-703. doi: 10.11764/j.issn.1672-1926.2023.09.016 [21] 郑马嘉,郭兴午,伍亚,等. 四川盆地德阳—安岳裂陷槽寒武系筇竹寺组超深层页岩气地质工程一体化高产井培育实践与勘探突破[J]. 中国石油勘探, 2024, 29(3): 58-68. doi: 10.3969/j.issn.1672-7703.2024.03.006 ZHENG Majia, GUO Xingwu, WU Ya, et al. Cultivation practice and exploration breakthrough of geology and engineering integrated high-yield wells of ultra-deep shale gas in the Cambrian Qiongzhusi Formation in Deyang-Anyue aulacogen, Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(3): 58-68. doi: 10.3969/j.issn.1672-7703.2024.03.006 [22] 何骁,郑马嘉,刘勇,等. 四川盆地“槽—隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. doi: 10.11743/ogg20240209 HE Xiao, ZHENG Majia, LIU Yong, et al. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen uplift” tectonic setting, Sichuan Basin[J]. Oil & Gas Geology, 2024, 45(2): 420-439. doi: 10.11743/ogg20240209 [23] 高波,刘忠宝,舒志国,等. 中上扬子地区下寒武统页岩气储层特征及勘探方向[J]. 石油与天然气地质, 2020, 41(2): 284-294. doi: 10.11743/ogg20200205 GAO Bo, LIU Zhongbao, SHU Zhiguo, et al. Reservoir characteristics and exploration of the Lower Cambrian shale gas in the Middle-Upper Yangtze Area[J]. Oil & Gas Geology, 2020, 41(2): 284-294. doi: 10.11743/ogg2020-0205 [24] ALI N, CHEN Jian, FU Xiaodong, et al. Classification of reservoir quality using unsupervised machine learning and cluster analysis: Example from Kadanwari Gas Field, SE Pakistan[J]. Geosystems and Geoenvironment, 2023, 2(1): 100123. doi: 10.1016/j.geogeo.2022.100123 [25] TARIQ Z, YILDIRIM E U, GUDALA M, et al. Spatial-temporal prediction of minerals dissolution and precipitation using deep learning techniques: An implication to geological carbon sequestration[J]. Fuel, 2023, 341: 127677. doi: 10.1016/j.fuel.2023.127677 [26] FAN Zhanglei, FAN Gangwei, ZHANG Dongsheng, et al. Modelling of flue gas injection and collaborative optimization of multi-injection parameters for efficient coal-based carbon sequestration combined with BP neural network parallel genetic algorithms[J]. Fuel, 2024, 368: 134536. doi: 10.1016/j.fuel.2024.131536 [27] GHORAYEB K, MOGENSEN K, DROUBI N E, et al. Holistic prediction of hydrocarbon fluids pressure-volume-temperature laboratory data using machine learning[J]. Fuel, 2024, 369: 131695. doi: 10.1016/j.fuel.2024.131695 [28] ZHENG Xin, JIA Guozhu. Active learning based reverse design of hydrogen production from biomass fuel[J]. Fuel, 2024, 357: 129948. doi: 10.1016/j.fuel.2023.129948 |