Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2021, Vol. 43 ›› Issue (3): 101-110.DOI: 10.11885/j.issn.16745086.2020.04.07.01
• OIL AND GAS ENGINEERING • Previous Articles Next Articles
LI Yibo1, HE Tianshuang1, HU Zhiming2, LI Yalong2, PU Wanfen1
Received:
2020-04-07
Published:
2021-06-22
CLC Number:
LI Yibo, HE Tianshuang, HU Zhiming, LI Yalong, PU Wanfen. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 101-110.
[1] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型,特征,机理及展望——以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187. doi:10.7623/syxb201202001 ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187. doi:10.7623/syxb201202001 [2] AGENCY I E, BIROL F. World energy outlook 2013[C]. Paris:International Energy Agency, 2013. doi:10.1787/20725302 [3] KUMAR S, HOFFMAN T, PRASAD M. Upper and lower Bakken shale production contribution to the middle Bakken reservoir[C]. Denver, Colorado:Unconventional Resources Technology Conference, 2013.doi:10.1190/urtec2013-001 [4] 王香增,张丽霞,雷裕红,等. 低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长7油层组页岩为例[J]. 石油学报,2018,39(2):141-151. doi:10.7623/syxb201802002 WANG Xiangzeng, ZHANG Lixia, LEI Yuhong, et al. Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:A case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation, Southeastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(2):141-151. doi:10.7623/syxb201802002 [5] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26. doi:10.1016/S1876-3804(13)60002-6 ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development countermeasures of shale oil[J]. Petroleum Exploration and Development, 2013, 40(1):14-26. doi:10.1016/S1876-3804(13)60002-6 [6] SHENG J J. Chapter one—Introduction to shale and tight reservoirs[M]//SHENG J J. Enhanced oil recovery in shale and tight reservoirs. Huston:Gulf Professional Publishing, 2020. doi:10.1016/B978-0-12-815905-7.00001-3 [7] SHENG J J. Enhanced oil recovery in shale reservoirs by gas injection[J]. Journal of Natural Gas Science and Engineering, 2015, 22:252-259. doi:10.1016/j.jngse.2014.12.002 [8] 周庆凡,杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质,2012,33(4):541-544,570. ZHOU Qingfan, YANG Guofeng. Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4):541-544, 570. [9] 胡素云,赵文智,侯连华,等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发,2020,47(4):819-828. doi:10.11698/PED.2020.04.19 HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4):819-828. doi:10.11698/PED.2020.04.19 [10] WAN T, SHENG J J. Enhanced recovery of crude oil from shale formations by gas injection in zipper-fractured horizontal wells[J]. Petroleum Science and Technology, 2015, 33:1605-1610. doi:10.1080/10916466.2015.1079536 [11] 张士诚,李四海,邹雨时,等. 页岩油水平井多段压裂裂缝高度扩展试验[J]. 中国石油大学学报(自然科学版),2021,45(1):77-86. doi:10.3969/j.issn.1673-5005.2021.01.009 ZHANG Shicheng, LI Sihai, ZOU Yushi, et al. Experimental study on fracture height propagation during multi-stage fracturing of horizontal wells in shale oil reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1):77-86. doi:10.3969/j.issn.1673-5005.2021.01.009 [12] 光新军,王敏生. 北美页岩油气重复压裂关键技术及建议[J]. 石油钻采工艺,2019,41(2):224-229. doi:10.13639/j.odpt.2019.02.016 GUANG Xinjun, WANG Minsheng. Re-fracturing key technologies ofshale oil and gas in North America and the suggestions[J]. Oil Drilling & Production Technology, 2019, 41(2):224-229. doi:10.13639/j.odpt.2019.02.016 [13] 蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 [14] 郭玉杰,刘平礼,郭肖,等. 多级水平井压裂注CO2开采页岩气影响因素分析[J]. 油气藏评价与开发,2016,6(2):64-68. doi:10.3969/j.issn.2095-1426.2016.02.015 GUO Yujie, LIU Pingli, GUO Xiao, et al. Influential factors analysis of shale gas exploitation by CO2 injection of multi-stage horizontal well fracturing[J]. Reservoir Evaluation and Development, 2016, 6(2):64-68. doi:10.3969/j.issn.2095-1426.2016.02.015 [15] WAN T, SHENG J J, SOLIMAN M Y, et al. Effect of fracture characteristics on behavior of fractured shale oil reservoirs by cyclic gas injection[J]. SPE Reservoir Evaluation and Engineering, 2016, 19(2):350-355. doi:10.2118/168880-PA [16] WAN T, SHENG J J. Evaluation of the EOR potential in hydraulically fractured shale oil reservoirs by cyclic gas injection[J]. Petroleum Science and Technology, 2015, 33(7):812-818. doi:10.1080/10916466.2015.1010041 [17] ALFARGE D, WEI M, BAI B. In IOR methods in unconventional reservoirs of North America:Comprehensive review[C]. SPE Western Regional Meeting, Society of Petroleum Engineers. 2017. SPE 185640-MS, 2017. doi:10.2118/185640-MS [18] ALHARTHY N, TEKLU T W, KAZEMI H, et al. Enhanced oil recovery in liquid-rich shale reservoirs:Laboratory to field[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(1):137-159. doi:10.2118/175034-PA [19] 胡永乐,郝明强,陈国利,等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019,46(4):716-726. doi:10.11698/PED.2019.04.10 HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technology and practice of CO2 flooding and storage in China[J]. Petroleum Exploration and Development, 2019, 46(4):716-726. doi:10.11698/PED.2019.04.10 [20] HAWTHORNE S B, GORECKI C D, SORENSEN J A, et al. In hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO[C]. SPE 167200-MS, 2013. doi:10.2118/167200-MS [21] BILLEMONT P, COSNE B, WEIRELD G. Adsorption of carbon dio-xide, methane, and their mixtures in porous carbons:Effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013, 29(10):3328-3338. doi:10.1021/la3048938 [22] LAN Y, YANG Z, WANG P, et al. A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding[J]. Fuel, 2019, 238:412-424. doi:10.1016/j.fuel.2018.10.130 [23] ARGILLIER J F, COUSTET C, HENAUT I. Heavy oil rheology as a function of asphaltene and resin content and temperature[C]. SPE 79496-MS, SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, 4-7 November, Calgary, Alberta, Canada, 2002. doi:10.2118/79496-MS [24] JIN L, SORENSEN J, HAWTHORNE S, et al. In improving oil transportability using CO2 in the Bakken system:A laboratorial investigation[C]. Proceedings of the SPE International Conference & E-xhibition on Formation Damage Control, Lafayette, LA, SPE 178948-MS, 2016. doi:10.2118/178948-MS [25] WANG Haitao, LUN Zengmin, LÜ Cchangyuan, et al. Nuclear-magnetic-resonance study on oil mobilization in shale exposed to CO2[C]. SPE 190185-PA, 2019. doi:10.2118/190185-PA [26] SHEN Z, SHENG J J. Experimental and numerical study of permeability reduction caused by asphaltene precipitation and deposition during CO2 huff and puff injection in Eagle Ford shale[J]. Fuel, 2018, 211:432-445. doi:10.1016/j.fuel.2017.09.047 [27] TODD H B, EVANS J G. In Improved oil recovery IOR pilot projects in the Bakken Formation[C]. SPE 180270-MS, 2016. doi:10.2118/180270-MS [28] 魏兵,宋涛,赵金洲,等. 溶解气回注提高致密油藏采收率效果及敏感性[J]. 西南石油大学学报(自然科学版), 2019,41(5):85-95. doi:10.11885/j.issn.1674-5086.2019.07.06.01 WEI Bing, SONG Tao, ZHAO Jinzhou, et al. Improving the recovery efficiency andsensitivity of tight oil reservoirs by dissolved gas reinjection[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(5):85-95. doi:10.11885/j.issn.1674-5086.2019.07.06.01 [29] HOFFMAN B T. In comparison of various gases for enhanced recovery from shale oil reservoirs[C]. SPE 154329-MS, 2012. doi:10.2118/154329-MS [30] HOFFMAN B T, REICHHARDT D. In quantitative evaluation of recovery mechanisms for huff-n-puff gas injection in unconventional reservoirs[C]. Denver, Colorado:The 7th Unconventional Resources Technology Conference, 2019. doi:10.15530/urtec2019-147, 4700-4714 [31] THAKUR G. Enhanced recovery technologies for unconventional oil reservoirs[J]. Journal of Petroleum Technology, 2019, 71(9):66-69. doi:10.2118/09190066-JPT [32] CARPENTER C. Huff-n-puff gas-injection pilot improves oil recovery in the Eagle Ford[J]. Journal of Petroleum Technology, 2018, 70(11):91-92. doi:10.2118/11180091-JPT [33] HOFFMAN B T. In huff-n-puff gas injection pilot projects in the Eagle Ford[C]. SPE 189816-MS, 2018. doi:10.2118/189816-MS [34] YU Y, SHENG J J. In An experimental investigation of the effect ofpressure depletion rate on oil recovery from shale cores by cyclic N2 injection[C]. San Antonio, Texas:Unconventional Resources Technology Conference, 2015. doi:10.15530/urtec2015-2144010 [35] ZHANG Y, SAYRGH S, HUANG S, et al. In laboratory investigation of enhanced light-oil recovery by CO/flue gas huff-n-puff process[C]. Canadian International Petroleum Conference, Petroleum Society of Canada, 2004. doi:10.2118/06-02-01 [36] 廖广志,王强,王红庄,等. 化学驱开发现状与前景展望[J]. 石油学报,2017,38(2):196-207. doi:10.7623/syxb201702007 LIAO Guangzhi, WANG Qiang, WANG Hongzhuang, et al. Chemical flooding development status and prospect[J]. Acta Petrolei Sinica, 2017, 38(2):196-207. doi:10.7623/syxb201702007 [37] 叶仲斌. 提高采收率原理[M]. 北京:石油工业出版社,2000. YE Zhongbin. Principle of enhanced recovery[M]. Bei jing:Petroleum Industry Press, 2000. [38] 冯海顺. 低渗油藏基于阴-非双子表面活性剂的复配驱油体系研究[D]. 北京:中国石油大学(北京),2018. doi:10.27643/d.cnki.gsybu.2018.000029 FENG Haishun. Study on combined floding system based on anionnonionic gemini surfactants in low permeability reservoirs[D]. Beijing:China University of Petroleum, 2018. doi:10.27643/d.cnki.gsybu.2018.000029 [39] ALVAREZ J O, TOVAR F D, SCHECHTER D S. Improving oil recovery in the wolfcamp reservoir by soaking/flowback production schedule with surfactant additives[C]. SPE 187483-PA, 2018. doi:10.2118/187483-PA [40] 胡钦红,刘惠民,黎茂稳,等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报,2018,39(3):278-289. doi:10.7623/syxb201803003 HU Qinhong, LIU Huimin, LI Maowen, et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3):278-289. doi:10.7623/syxb201803003 [41] ALVAREZ J O, SAPUTRA I, SCHECHTER D S. The impact of surfactant imbibition and adsorption for improving oilrecovery in the Wolfcamp and Eagle Ford Reservoirs[J]. SPE Journal, 2018, 23(6):2103-2117. doi:10.2118/187176-PA [42] BUI K, AKKUTLU I Y, ZELENEV A S, et al. Microemulsion effects on oil recovery from kerogen using molecular-dynamics simulation[C]. SPE 191719-PA, 2019. doi:10.2118/191719-PA [43] XU L, HE K, NGUYEN C. Insights into surfactant containing fracturing fluids inducing microcracks and spontaneously imbibing in shale rocks[C]. SPE 175959-MS, 2015. doi:10.2118/175959-MS [44] KIM T S, KONNO T, DAUSKARDT R H. Surfactant-controlled damage evolution during chemical mechanical planarization of nanoporous films[J]. Acta Materialia, 2009, 57(16):4687-4696. doi:10.2118/175959-MS [45] MORROW N, BUCKLEY J. Improved oil recovery by low salinity waterflooding[J]. Journal of Petroleum Technology, 2011, 63(5):106-112. doi:10.2118/129421JPT [46] 吴剑,常毓文,李嘉,等. 低矿化度水驱技术增产机理与适用条件[J]. 西南石油大学学报(自然科学版),2015,37(5):145-151. doi:10.11885/j.issn.1674-5086.2013.11.04.06 WU Jian, CHANG Yuwen, LI Jia, et al. Mechanism of low salinity waterflooding enhanced oil recovery and its application[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5):145-151. doi:10.11885/j.issn.1674-5086.2013.11.04.06 [47] BARTELS W B, MAHANI H, BERG S, et al. Literature review of low salinity waterflooding from a length and time scale perspective[J]. Fuel, 2019, 236:338-353. doi:10.1016/j.fuel.2018.09.018 [48] SHENG J J. Critical review of low-salinity waterflooding[J]. Journal of Petroleum Science and Engineering, 2014, 120:216-224. doi:10.1016/j.petrol.2014.05.026 [49] MCGUIRE P L, CHATHAM J R, PASKVAN F K, et al. Low salinity oil recovery:An exciting new EOR opportunity for Alaska's North Slope[C]. SPE 93903-MS, 2005. doi:10.2118/93903-MS [50] YOUSEF A A, SALEH S, JAWFI M S. Improved/enhanced oil recovery from carbonate reservoirs by truning injection water salinity and ionic content[C]. SPE 154076-MS, 2012. doi:10.2118/154076-MS [51] ABDULLA F, HASHEM H S, ABDULRAHEEM B, et al. First eortrial using low salinity water injection in the Greater Burgan Field, Kuwait[C]. SPE 164341-MS, 2013. doi:10.2118/164341-MS [52] TEKLU T W, LI X P, ZHOU Z, et al. Low-salinity water and surfa-ctants for hydraulic fracturing and EOR of shales[J]. Journal of Petroleum Science and Engineering, 2018, 162:367-377. doi:10.1016/j.petrol.2017.12.057 [53] 李宾飞,李兆敏,吕其超,等. 泡沫在裂缝中流动特征的物理模拟[J]. 中南大学学报(自然科学版),2017,48(9):2465-2473. doi:10.11817/j.issn.1672-7207.2017.09.027 LI Binfei, LI Zhaomin, LÜ Qichao, et al. Physical simulation on flowing characteristics of foam in fracture[J]. Journal of Central South University (Science and Technology), 2017, 48(9):2465-2473. doi:10.11817/j.issn.1672-7207.2017.09.027 [54] FARZANEH S A, SOHRABI M. A review of the status of foam application in enhanced oil recovery[C]. SPE 164917-MS, 2013. doi:10.2118/164917-MS [55] BUCHGRABER M, CATANIER L M, KOVSCEK A R. Micro-visual investigation of foam flow in ideal fractures:Role of fracture aperture and surface roughness[C]. SPE 159430-MS, 2012. doi:10.2118/159430-MS [56] AROONSRI A, WORTHEN A J, HARIZ T, et al. Conditions for generating nanoparticle stabilized CO2 foams in fracture and matrix flow[C]. SPE 166319-MS, 2013. doi:10.2118/166319-MS [57] FERNOO M A, GAUTEPLASS J, PANCHAROEN M, et al. Experimental study of foam generation, sweep efficiency and flow in a fracture network[C]. SPE 170840-MS, 2014. doi:10.2118/170840-MS [58] KATIYAR A, PATIL P, ROHILLA N, et al. Industry-first hydrocarb-on foam eor pilot in an unconventional reservoir:Design, implementation, and performance analysis[C]. Denver, Colorado:In SPE/AAPG/SEG Unconventional Resources Technology Conference, 2019. doi:10.15530/urtec2019-103 [59] SIE C Y, NGUYEN Q. Non aqueous foam for improving hydrocarbon miscible flooding in water sensitive tight oil formations[C]. SPE 196162-MS, 2019. doi:10.2118/196162-MS [60] LI Y B, CHEN Y F, PU W F, et al. The kinetic analysis of oxidized oil during the high pressure air injection by thermal kinetic analysis[J]. Petroleum Science and Technology, 2015:319-326. doi:10.1080/10916466.2014.95-9132 [61] GILLHAM T, CERVENY B, TUREK E, et al. In keys to increasing production via air injection in Gulf Coast light oil reservoirs[C]. SPE 38848-MS, 1997. doi:10.2118/38848-MS [62] GREAVES M, REN S R, RATHBONE R R. Air injection technique (LTO Process) for IOR from light oil reservoirs oxidation rate and displacement studies[C]. SPE 0199-0046-JPT, 1998. doi:10.2118/01990046-JPT [63] LEE K J, MORIDIS G J, EHLIG-ECONOMIDES C A. A comprehensive simulation model of kerogen pyrolysis for the insitu upgrading of oil shales[J]. SPE Journal, 2016, 21(5):1612-1630. doi:10.2118/173299-PA [64] BURWELL E L, STERNERR T E, CARPENTER H C. Shale oil recovery by in-situ retorting:A pilot study[J]. Journal of Petroleum Technology, 1970, 22(12):1520-1524. doi:10.2118/2915-PA [65] ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[C]. Colorado:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2013. doi:10.1190/urtec2013-153 [66] HENAUT I, BARRE L, ARGILLIER J F, et al. Rheological and structural properties of heavy crude oils in relation with their asphaltenes content[C]. SPE 65020-MS, 2001. doi:10.2118/65020-MS [67] WONG R C K, CHAU K T. Propagation of in situ horizontal fractures in shale due to steam injection[C]. Calgary, Alberta:In Canadian International Petroleum Conference Petroleum Society of Canada, 2002. doi:10.2118/0401-04 [68] REIS J C. Oil recovery mechanisms in fractured reservoirs during steam injection[C]. SPE 20204-MS, 1990. doi:10.2118/20204-MS [69] ROSS T S, RAHNEMA H, NWACHUKWU C, et al. Steam injection in tight oil reservoir[C]. SPE 190289-MS, 2018. doi:10.2118/190289-MS [70] AL-SAEDI H N, AL-BAZZAZ W, FLORI R E. Is steam flooding a form of low salinity water flooding?[C]. SPE 194820-MS, 2019. doi:10.2118/194820-MS [71] MOHANTY K K, TONG S, MILLER C, et al. Improved hydrocarbon recovery using mixtures of energizing chemicals in unconventional reservoirs[C]. SPE 187240-MS, 2017. doi:10.2118/187240-MS [72] ARGUELLES-VIVAS F J, WANG M, ABEYKOON G A, et al. Enhancement of water imbibition in shales by use of Ketone Solvent[C]. SPE 199322-MS, 2020. doi:10.2118/199322-MS [73] WANG M, BAEK K H, ABEYKOON G A, et al. Oxygenated solvent as a novel additive for improved oil recovery in tight oil reservoirs[C]. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers:Calgary, Alberta, Canada, 2019, 16. SPE 195871-MS, 2019. 10.2118/195871-MS [74] LIU He, JIN Xu, DING Bin. Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6):1107-1115. doi:10.1016/S18763804(16)30129-X [75] 刘珑,范洪富,孙江河,等. 纳米颗粒稳定泡沫驱油研究进展[J]. 油田化学,2019,36(4):748-754. doi:10.19346/j.cnki.10004092.2019.04.034 LIU Long, FAN Hongfu, SUN Jianghe, et al. Research progress of nanoparticles stabilized foam for EOR[J]. Oilfield Chemistry, 2019, 36(4):748-754. doi:10.19346/j.cnki.10004092.2019.04.034 [76] WEI Bing, LI Hao, LI Qinzhi, et al. Stabilization of foam lamella using novel surface grafted nano-cellulose based nano-fluids[J]. Langmuir, 2017, 33(21):5127-5139. doi:10.1021/acs.langmuir.7b00387 [77] WILSON A. Non-modified silica nanoparticles decrease water invasion into Atoka shale[J]. SPE-0213-0141-JPT, 2013. doi:10.2118/0213-0141-JPT [78] SINGH R, TONG S, PANTHI K, et al. Stimulation of calcite-rich shales using nanoparticle-microencapsulated acids[J]. SPE Journal, 2019, 24(6):2671-2680. doi:10.2118/195695-PA |
[1] | HE Jingang, YUAN Lin. The Technology of “Adjustment + Displacement + Water Plugging + Fracturing” Using Polymer-surfactant Agent After Polymer Flooding [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 165-174. |
[2] | WEI Bing, LIU Jiang, ZHANG Xiang, PU Wanfen. Advances of Enhanced Oil Recovery Method and Theory in Tight Reservoirs [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 91-102. |
[3] | MIN Chao, DAI Boren, ZHANG Xinhui, DU Jianping. A Review of the Application Progress of Machine Learning in Oil and Gas Industry [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 1-15. |
[4] | ZHOU Jian, SONG Yanjie, JIANG Yanjiao, SUN Qinshuai, JING Yanqing. The Research Progress of Well Logging Evaluation of Marine Natural Gas Hydrate [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 85-93. |
[5] | ZHANG Deping, MA Feng, WU Yule, DONG Zehua. Optimization of Injection Technique of Corrosion Inhibitor in CO2-flooding Oil Recovery [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103-109. |
[6] | LIANG Meng, YUAN Haiyun, YANG Ying, YANG Yunbo, LIN Jiangtao. Research Progress on Miscible Gas Displacement and Determination of Minimum Miscibility Pressure [J]. 西南石油大学学报(自然科学版), 2017, 39(5): 101-112. |
[7] | SU Wei, HOU Jirui, LIU Juan, ZHU Daoyi, XI Yuanyuan. Evaluation of EOR Effect of Gas Huff-n-puff in Fractured Vuggy Carbonate Reservoirs [J]. 西南石油大学学报(自然科学版), 2017, 39(1): 133-139. |
[8] | Liu Zupeng1*, Li Zhaomin2. An Experimental Study on Anti-channeling Technology with Foam in#br# CO2 Flooding [J]. 西南石油大学学报(自然科学版), 2015, 37(5): 117-122. |
[9] | Wu Jian1,2*, Chang Yuwen1, Li Jia1, Liang Tao1, Guo Xiaofei1. Mechanisms of Low Salinity Waterflooding Enhanced Oil Recovery#br# and Its Application [J]. 西南石油大学学报(自然科学版), 2015, 37(5): 145-151. |
[10] | Xie Xiaoqing1,2*, Feng Guozhi1,2, Liu Liwei1,2, Shi Yao1,2, Zeng Yang1,2. The Distribution of Residual Polymer and the Synergistic Action of Binary Combination Flooding After Polymer Flooding [J]. 西南石油大学学报(自然科学版), 2015, 37(4): 135-140. |
[11] | Liu Rui1,2*, Pu Wanfen1,2, Peng Huan2, Zhao Tianhong3, Shang Xiaopei2. Preparation of Hyperbranched Association Polyacrylamide and Its Oil Displacement Properties [J]. 西南石油大学学报(自然科学版), 2015, 37(2): 145-152. |
[12] | Jiang Wenchao1, Ye Zhongbin1,2**, Gou Shaohua1,2, Liu Xiangjun1,3, Song Zewen2. Synthesis of Imidazoline Modified Acrylamide-based Copolymer as EOR Chemical [J]. 西南石油大学学报(自然科学版), 2014, 36(6): 143-149. |
[13] | Guan Xiaoxu1,2, Yi Xiangyi1, Yang Huohai1,2. Contrast of Shale Gas Reservoir Conditions in China and the United States [J]. 西南石油大学学报(自然科学版), 2014, 36(5): 33-39. |
[14] | Wang Jiexiang, Wang Tengfei, Han Lei, Ren Wenlong. Experimental Study of Improved Oil Recovery Through Air Foam Flooding in Ultra-low Permeability Reservoir [J]. 西南石油大学学报(自然科学版), 2013, 35(5): 130-134. |
[15] | Yao Chuanjin, Li Lei, Lei Guanglun, Gao Xuemei. Deep Profile Control and Flooding Performance of Throat-scale Elastic Microspheres [J]. 西南石油大学学报(自然科学版), 2013, 35(4): 114-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||