[1] Waggoner J R,Mansure A J. Development of the downholedynamometer databse[C]. SPE 60768,2000.[2] Mccoy J N,Jennings J W,Capps K S,et al. Simplifiedcomputer-aided analysis of electrical current in motorsused for beam pumping systems[C]. SPE 25447,1993.[3] Corea J F. Intelligent distributed management system forautomated wells:Experience and results[C]. SPE 84255,2003.[4] Dallag M M. Intelligent integrated dynamic surveillancetool improves field-management practices[C]. SPE99555,2006.[5] Cerqueira J F,Correa J F,Bittencourt A C. Developmentof an intelligent distributed management system for automatedwells[C]. SPE 77609,2002.[6] Zhang Shirong,Tang Yuling. Indirect measurement ofdynamometer card of pumping unit[C]. The 7th WorldCongress on Intelligent Control and Automation,2008,4952– 4955.[7] Li Hongsheng,Wang Yu,Ding Yongzhong,et al. Implementionof network-computing and NN based remotereal-time oil well monitoring system[C]. 2005 InternationalConference on Neural Networks and Brain,2005.[8] Scott W L,Elton J S,Albert S G. Total down strokefriction from downhole dynamometer analysis[C]. SPE67274,2001.[9] 梁华. 有杆抽油系统故障递阶诊断的故障分辨研究[J]. 西南石油大学学报:自然科学版,2014,36(5):169–175.Liang Hua. Fault hierarchical diagnosis of rod pumpingsystem based on fault distinguish[J]. Journa of SouthwestPetroleum University:Science & Technology Edition,2014,36(5):169– 175.[10] Liang Hua,Li Xunming. Accurate extraction of valveopening and closing points based on the physical meaningof surface dynamometercard[J]. Petroleum Explorationand Development,2011,65– 71.[11] 张强,许少华. 智能动态诊断模型及在示功图识别中的应用[J]. 计算机工程与应用,2009,45(4):215–217.[12] De Lima,Guedes,Sliva. Application of Fourier Descriptorsand Pearson Correlation for Fault Detection in SuckerRod Pumping System[C]. IEEE Conference on EmergingTechnologies and Factory Automation,2009.[13] Seol J M,Kim S W. Collision-resilient multi-state querytee protocol for fast RFID tag identification[C]. InternationalConference on Computational Intelligence and Security,2006.[14] 李世煜,冯全源. 分层深度搜索树型RFID 防碰撞算法设计[J]. 计算机工程与应用,2009,45(11):82–84.[15] Suzuki Y,Thompson S,Kagami S. High-speed planningand reducing memory usage of a precomputed search treeusing pruning[J]. Intelligent Robots and Systems,2009.[16] Herman T,Masuzawa T. A stabilizing search tree withavailability properties[C]. The 5th International Symposiumon Autonomous Decentralized Systems,2001.[17] Pushpa S,Vinod P,Maple C. Creating a forest of binarysearch trees for a multiprocessor system[C]. InternationalSymposium on Parallel Computing in Electrical Engineering,2006.[18] Thwin M T,Quah T S. Application of neural networkfor predicting software development faults using objectorienteddesign metrics[C]. The 9th International Conferenceon Neural Information Processing,2002.[19] Tan S C,Lim C P. Condition monitoring and fault predictionvia an adaptive neural network[C]. 2000 AnnualInternational Technical Conference of IEEE,2000.[20] Taghi M K,Naeem S. Tree-based software quality estimationmodels for fault prediction[C]. The 8th IEEE Symposiumon Software Metrics,2002.