[1] TAMAS F D. Electrical conductivity of cement pastes[J]. Cement and Concrete Research, 1982, 12(1):115-120. doi:10.1016/0008-8846(82)90106-5 [2] 程小伟,刘开强,李早元,等. 油井水泥浆液-固态演变的结构与性能[J]. 石油学报,2016,37(10):1287-1292. doi:10.7623/syxb201610009 CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and properties of oil well cement slurry during liquidsolid transition[J]. Acta Petrolei Sinica, 2016, 37(10):1287-1292. doi:10.7623/syxb201610009 [3] MORSY M S. Effect of temperature on electrical conductivity of blended cement pastes[J]. Cement and Concrete Research, 1999, 29(4):603-606. doi:10.1016/S0008-8846(98)00198-7 [4] BACKE K R, LILE O B, LYOMOV S K, et al. Characterizing curing cement slurries by electrical conductivity[J]. SPE Drilling & Completion, 2001, 16(4):201-207. doi:10.2118/74694-PA [5] SALEM T M, RAGAI S M. Electrical conductivity of granulated slag cement kiln dust-silica fume pastes at different porosities[J]. Cement and Concrete Research, 2001, 31(5):781-787. doi:10.1016/S0008-8846(01)00461-6 [6] SALEM T M. Electrical conductivity and rheological properties of ordinary Portland cement-silica fume and calcium hydroxide-silica fume pastes[J]. Cement and Concrete Research, 2002, 32(9):1473-1481. doi:10.1016/S0008-8846(02)00809-8 [7] HEIKAL M, MORSY M S, AIAD I. Effect of treatment temperature on the early hydration characteristics of superplasticized silica fume blended cement pastes[J]. Cement and Concrete Research, 2005, 35(4):680-687. doi:10.1016/j.cemconres.2004.06.012 [8] BUENFELD N R, NEWMAN J B. Examination of the three methods for studying ion diffusion in cement pasts, mortars and concrete[J]. Materials and Structures, 1987, 20(1):3-10. doi:10.1007/BF02472720 [9] TANG S W, LI Z J, SHAO H Y, et al. Characterization of early-age hydration process of cement pastes based on impedance measurement[J]. Construction and Building Materials, 2014, 68:491-500. doi:10.1016/j.conbuildmat.2014.07.009 [10] MATERIALS O F, SALEM T M. The electrical conductance and hydration kinetics of artificial pozzolana-cement pastes[J]. Journal of Materials Science, 1996, 31(20):5299-5303. doi:10.1007/BF01159295 [11] TOPCU I B, UYGUNOGLU T, HOCAOGLU I. Electrical resistivity of fly ash blended cement paste at hardening stage[J]. Materials Science, 2016, 22(3):458-462. doi:10.5755/j01.ms.22.3.10771 [12] XIAO Lianzhen, LI Zongjin. Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement[J]. Cement and Concrete Research, 2008, 38(3):312-319. doi:10.1016/j.cemconres.2007.09.027 [13] El-ENEIN S A A, KOTKATA M F, HANNA G B, et al. Electrical conductivity of concrete containing silica fume[J]. Cement and Concrete Research, 1995, 25(8):1615-1620. doi:10.1016/0008-8846(95)00156-5 [14] SHEN Peiliang, LU Linnu, HE Yongjia, et al. Hydration monitoring and strength prediction of cement-based materials based on the dielectric properties[J]. Construction and Building Materials, 2016, 126:179-189. doi:10.1016/j.conbuildmat.2016.09.030 [15] MCCARTER W J, STARRS G, CHRISP T M. Electrical conductivity, diffusion, and permeability of Portland cement-based mortars[J]. Cement and Concrete Research, 2000, 30(9):1395-1400. doi:10.1016/S00088846(00)00281-7 [16] LIU Kaiqiang, CHENG Xiaowei, GAO Xianshu, et al. Effect of the hydration rate and microstructure of Portland cement slurry on hydrostatic pressure transfer[J]. Powder Technology, 2019, 352:251-261. doi:10.1016/j.powtec.2019.04.066 [17] BACKE K R, LYOMOV S K, LILE O B. A laboratory study on oilwell cement and electrical conductivity[C]. SPE 56539-MS, 1999. doi:10.2118/56539-MS [18] HANSEN T C. Physical structure of hardened cement paste[J]. Materials and Structures, 1986, 19(6):423-436. doi:10.1007/BF02472146 [19] SHE Anming, YAO Wu, YUAN Wancheng. Hydration dynamics of portland cement studied by magnetic resonance[J]. Applied Mechanics and Materials, 2012, 193:509-512. doi:10.4028/www.scientific.net/AMM.193-194.509 [20] NICOLELLA D P, NI Q, CHAN K S. Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(3):383-391. doi:10.1016/j.jmbbm.2010.11.007 [21] SHE Anming, YAO Wu, WEI Yongqi. In-situ monitoring of hydration kinetics of cement pastes by low-field NMR[J]. Journal of Wuhan University of TechnologyMater Sci Ed, 2010, 25(4):692-695. doi:10.1007/s11595010-0072-5 [22] BEDE A, SCURTU A, ARDELEAN I. NMR relaxation of molecules confined inside the cement paste pores under partially saturated conditions[J]. Cement and Concrete Research, 2016, 89:56-62. doi:10.1016/j.cemconres.2016.07.012 [23] LOTHENBACH B, WINNEFELD F, ALDER C, et al. Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes[J]. Cement and Concrete Research, 2007, 37(4):483-491. doi:10.1016/j.cemconres.2006.11.016 [24] LIU Kaiqiang, CHENG Xiaowei, ZHANG Chi, et al. Evolution of pore structure of oil well cement slurry in suspension-solid transition stage[J]. Construction and Building Materials, 2019, 214:382-398. doi:10.1016/j.conbuildmat.2019.04.075 [25] 郭锦棠,周贤明,靳建洲,等. 抗高温耐盐AMPS/AM/AA降失水剂的合成及其性能表征[J]. 石油学报, 2011, 32(3):470-473. GUO Jintang, ZHOU Xianming, JIN Jianzhou, et al. The synthesis and performance characterization of the AMPS/AM/AA terpolymer as a temperature-resistance, salt-tolerance fluid-loss additive[J]. Acta Petrolei Sinica, 2011, 32(3):470-473. [26] MCDONALD P J, RODIN V, VALORI A. Characterisation of intra-and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content[J]. Cement and Concrete Research, 2010, 40(12):1656-1663. doi:10.1016/j.cemconres.2010.08.003 [27] LIU Kaiqiang, CHENG Xiaowei, LI Jingxue, et al. Effects of microstructure and pore water on electrical conductivity of cement slurry during early hydration[J]. Composites Part B:Engineering, 2019, 177:1-15. doi:10.1016/j.compositesb.2019.107435 |