[1] 缪长生,张晨阳,李振华,等. 塔里木油田产量预测方法探讨[J]. 中国管理信息化,2016,19(22):84-85. doi:10.3969/j.issn.1673-0194.2016.22.055 MIAO Changsheng, ZHANG Chenyang, LI Zhenhua, et al. A study on the production prediction method of Tarim Oilfield[J]. China Management Informationization, 2016, 19(22):84-85. doi:10.3969/j.issn.1673-0194.2016.22.055 [2] 陈元千. 对翁氏预测模型的推导及应用[J]. 天然气工业, 1996, 16(2):22-26. CHEN Yuanqian. Derivation and application of Weng's prediction model[J]. Natural Gas Industry, 1996, 16(2):22-26. [3] 郭建军. 气田水平井开发技术政策研究——以克拉美丽气田为例[D]. 北京:中国地质大学(北京), 2012. GUO Jianjun. The horizontal well technology policy research in gas field:Taking the Kelameili Gas Field as an example[D]. Beijing:China University of Geosciences (Beijing), 2012. [4] 赵艳艳,袁向春,康志江. 缝洞型碳酸盐岩油藏油井产量及压力变化模型[J]. 石油与天然气地质, 2010, 31(1):54-56, 62. ZHAO Yanyan, YUAN Xiangchun, KANG Zhijiang. Flow rate and pressure variation modeling for production wells in fractured-vuggy carbonates reservoirs[J]. Oil & Gas Geology, 2010, 31(1):54-56, 62. [5] 徐波,薛中天,韩继勇. 用灰色系统模型预测油井产量[J]. 石油钻采工艺, 2001, 23(3):48-49. doi:10.13639/j.odpt.2001.03.019 XU Bo, XUE Zhongtian, HAN Jiyong. Oil production prediction by grey system model[J]. Oil Drilling & Production Technology, 2001, 23(3):48-49. doi:10.13639/j.odpt. 2001.03.019 [6] 鲁建中. 油田年产油量与含水率预测方法[J]. 大庆石油地质与开发, 2007, 26(4):62-65. LU Jianzhong. Yearly oil production and water cut forecasting method[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(4):62-65. [7] 王春梅. 基于神经网络的数据挖掘算法研究[J]. 现代电子技术, 2017, 40(11):111-114. doi:10.16652/j.issn.1004-373x.2017.11.029 WANG Chunmei. Research on data mining algorithm based on neural network[J]. Modern Electronics Technology, 2017, 40(11):111-114. doi:10.16652/j.issn.1004-373x.2017.11.029 [8] 陶砾,杨朔,杨威. 深度学习的模型搭建及过拟合问题的研究[J]. 计算机时代, 2018(2):14-17, 21. doi:10.16644/j.cnki.cn33-1094/tp.2018.02.004 TAO Li, YANG Shuo, YANG Wei. Research on model building and over-fitting of deep learning[J]. Computer Era, 2018(2):14-17, 21. doi:10.16644/j.cnki.cn33-1094/tp.2018.02.004 [9] 李春生,谭民浠,张可佳. 基于改进型BP神经网络的油井产量预测研究[J]. 科学技术与工程,2011,11(31):7766-7769. LI Chunsheng, TAN Minxi, ZHANG Kejia. Research on single well production prediction based on improved BP neural networks[J]. Science Technology and Engineering, 2011, 11(31):7766-7769. [10] 谷建伟,周梅,李志涛,等. 基于数据挖掘的长短期记忆网络模型油井产量预测方法[J]. 特种油气藏,2019,26(2):77-81. doi:10.3969/j.issn.1006-6535.2019.02.013 GU Jianwei, ZHOU Mei, LI Zhitao, et al. Oil well production forecast with long-shourt term memory network model based on data mining[J]. Special Oil and Gas Reservoirs, 2019, 26(2):77-81. doi:10.3969/j.issn.1006-6535.2019.02.013 [11] 田祥雨,刘立龙,陈军,等. 基于ARIMA与HoltWinters组合模型的电离层TEC预报[J]. 测绘科学技术学报, 2018, 35(1):44-48. TIAN Xiangyu, LIU Lilong, CHEN Jun, et al. Ionospheric TEC prediction based on the combination model of ARIMA and holt-winters[J]. Journal of Geomatics Science and Technology, 2018, 35(1):44-48. [12] KIRSHNER H, MAGGIO S, UNSER M. A sampling theory approach for continuous ARMA identification[J]. IEEE Transactions on Signal Processing, 2011, 59(10):4620-4634. doi:10.1109/TSP.2011.2161983 [13] 刘军,柴洪洲,常宜峰,等. 改进的修正预测法预报电离层[J]. 测绘科学技术学报, 2011, 28(1):19-22. LIU Jun, CHAI Hongzhou, CHANG Yifeng, et al. Predicting ionospheric using improved correcting prediction method[J]. Journal of Geomatics Science and Technology, 2011, 28(1):19-22. [14] FRAUSTO-SOLÍS J, CHI-CHIM M, SHEREMETOV L. Forecasting oil production time series with a populationbased simulated annealing method[J]. Arabian Journal for Science and Engineering, 2015, 40(4):1081-1096. [15] VAPNIK V. Statistical learning theory[M]. New York:DBLP, 1998. [16] 丁宏飞. 基于智能优化算法的支持向量机回归及其应用[D]. 成都:西南交通大学, 2011. DING Hongfei. Support vector machine regression based on intelligent optimization algorithm and its application[D]. Chengdu:Southwest Jiaotong University, 2011. [17] 苏筱倩,安俊琳,张玉欣,等. 支持向量机回归在臭氧预报中的应用[J]. 环境科学, 2019, 40(4):1697-1704. doi:10.13227/j.hjkx.201809134 SU Xiaoqian, AN Junlin, ZHANG Yuxin, et al. Application of support vector machine regression in ozone forecasting[J]. Environmental Science, 2019, 40(4):1697-1704. doi:10.13227/j.hjkx.201809134 [18] 杨敏,丁剑,王炜. 基于ARIMA-SVM模型的快速公交停站时间组合预测方法[J]. 东南大学学报(自然科学版),2016,46(3):651-656. doi:10.3969/j.issn.1001-0505.2016.03.033 YANG Min, DING Jian, WANG Wei. Hybrid dwell time prediction method for bus rapid transit based on ARIMASVM model[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3):651-656. doi:10.3969/j.issn.1001-0505.2016.03.033 [19] 宋国君,国潇丹,杨啸,等. 沈阳市PM2.5 浓度ARIMASVM组合预测研究[J]. 中国环境科学, 2018, 38(11):4031-4039. doi:10.19674/j.cnki.issn1000-6923.2018.0445 SONG Guojun, GUO Xiaodan, YANG Xiao, et al. ARIMA-SVM combination prediction of PM2.5 concentration in Shenyang[J]. China Environmental Sciences, 2018, 38(11):4031-4039. doi:10.19674/j.cnki.issn1000-6923.2018.0445 [20] 郑荣,颜七笙. 基于ARIMA与SVM的国际铀资源价格预测[J]. 计算机工程与应用, 2016, 52(1):146-150. doi:10.3778/j.issn.1002-8331.1401-0234 ZHENG Rong, YAN Qisheng. Uranium resource price forecasting based on ARIMA and SVM model[J]. Computer Engineering and Application, 2016, 52(1):146-150. doi:10.3778/j.issn.1002-8331.1401-0234 [21] 漆莉,李革,李勤. ARIMA模型在流行性感冒预测中的应用[J]. 第三军医大学学报, 2007, 29(3):267-269. doi:10.3321/j.issn:1000-5404.2007.03.028 QI Li, LI Ge, LI Qin. Application of ARIMA model on predictive incidence of influenza[J]. Acta Academiae Medicinae Militrris Tertiae, 2007, 29(3):267-269. doi:10.3321/j.issn:1000-5404.2007.03.028 [22] DAVID P. jModelTest:Phylogenetic model averaging[J]. Molecular Biology and Evolution, 2008, 25(7):1253-1256. doi:10.1093/molbev/msn083 [23] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. doi:10.1162/neco.1997.9.8.1735 |