Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2021, Vol. 43 ›› Issue (1): 91-102.DOI: 10.11885/j.issn.1674-5086.2020.03.10.01
• OIL AND GAS ENGINEERING • Previous Articles Next Articles
WEI Bing, LIU Jiang, ZHANG Xiang, PU Wanfen
Received:
2020-03-10
Online:
2021-02-10
Published:
2021-01-23
CLC Number:
WEI Bing, LIU Jiang, ZHANG Xiang, PU Wanfen. Advances of Enhanced Oil Recovery Method and Theory in Tight Reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 91-102.
[1] WANG L, YU W. Gas huff and puff process in Eagle Ford shale:Recovery mechanism study and optimization[C]. SPE 195185-MS, 2019. doi:10.2118/195185-MS [2] KURTOGLU B K. A rock and fluid study of middle Bakken Formation:Key to enhanced oil recovery[C]. 76th EAGE Conference and Exhibition, 2014. doi:10.3997/2214-4609.20141385 [3] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6):979-1007. doi:10.3969/j.issn.0001-5717.2015.06.001 ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6):979-1007. doi:10.3969/j.issn.0001-5717.2015.06.001 [4] 熊生春,储莎莎,皮淑慧,等. 致密油藏储层微观孔隙特征与可动用性评价[J]. 地球科学,2017(8):1379-1385. doi:10.3799/dqkx.2017.550 XIONG Shengchun, CHU Shasha, PI Shuhui, et al. Micropore characteristics and recoverability of tight oil reservoirs[J]. Earth Science, 2017(8):1379-1385. doi:10.3799/dqkx.2017.550 [5] 张君峰,毕海滨,许浩,等. 国外致密油勘探开发新进展及借鉴意义[J]. 石油学报, 2015, 36(2):127-137. doi:10.7623/syxb201502001 ZHANG Junfeng, BI Haibin, XU Hao, et al. New progress and reference significance of overseas tight oil exploration and development[J]. Acta Petrolei Sinica, 2015, 36(2):127-137. doi:10.7623/syxb201502001 [6] TODD H B, EVANS J G. Improved oil recovery IOR pilot projects in the Bakken formation[C]. SPE 180270-MS, 2016. doi:10.2118/180270-MS [7] ALFARGE D, WEI M, BAI B. IOR methods in unconventional reservoirs of North America:Comprehensive review[C]. SPE 185640-MS, 2017. doi:10.2118/185640-MS [8] SONG C, YANG D. Performance evaluation of CO2 huffn-puff processes in tight oil formations[C]. SPE 167217-MS, 2013. doi:10.2118/167217-MS [9] WANG X, LUO P, ER V, et al. Assessment of CO2 flooding potential for Bakken Formation, Saskatchewan[C]. SPE 137728-MS, 2010. doi:10.2118/137728-MS [10] VALLURI M K, ALVAREZ J O, SCHECHTER D S.Study of the rock/fluid interactions of sodium and calcium brines with ultra-tight rock surfaces and their impact on improving oil recovery by spontaneous imbibition[C]. SPE 180274-MS, 2016. doi:10.2118/180274-MS [11] WAN T, SHENG J J, SOLIMAN M Y. Evaluate EOR potential in fractured shale oil reservoirs by cyclic gas injection[C]. Unconventional Resources Technology Conference, AAPG, Society of Petroleum Engineers, 2013. doi:10.1190/urtec2013-187 [12] ZHU P, BALHOFF M T, MOHANTY K K. Simulation of fracture-to-fracture gas injection in an oil-rich shale[C]. SPE 175131-MS, 2015. doi:10.2118/175131-MS [13] 孙龙德,邹才能,贾爱林,等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6):1015-1026. doi:10.11698/PED.2019.06.01 SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6):1015-1026. doi:10.11698/PED.2019.06.01 [14] 贾承造,邹才能,李建忠,等. 中国致密油评价标准, 主要类型,基本特征及资源前景[J]. 石油学报, 2012, 33(3):343-350. doi:10.7623/syxb201203001 JIA Chengzao, ZOU Caineng, LI Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3):343-350. doi:10.7623/syxb201203001 [15] WANG D, BUTLER R, ZHANG J, et al. Wettability survey in Bakken shale with surfactant-formulation imbibition[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(6):695-705. doi:10.2118/153853-PA [16] ALVAREZ J O, SCHECHTER D S. Altering wettability in Bakken shale by surfactant additives and potential of improving oil recovery during injection of completion fluids[C]. SPE 179688-MS, 2016. doi:10.2118/179688-MS [17] MORSY S, SHENG J J, SOLIMAN M Y. Waterflooding in the Eagle Ford Shale formation:Experimental and simulation study[C]. SPE 167056-MS, 2013. doi:10.2118/167056-MS [18] WAN T, SHENG J. Compositional modelling of the diffusion effect on EOR process in fractured shale-oil reservoirs by gasflooding[J]. Journal of Canadian Petroleum Technology, 2015, 54(2):107-115. doi:10.2118/2014-1891403-PA [19] TANG G Q, AMINZADEH B, ZHOU D, et al. An experimental study on supercritical CO2 injection in fractured tight reservoir to enhance oil recovery[C]. Texas:Unconventional Resources Technology Conference, 2016. doi:10.15530/URTEC-2016-2434062 [20] YU W, LASHGARI H R, WU K, et al. CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs[J]. Fuel, 2015, 159:364-372. doi:10.1016/j.fuel.2015.06.092 [21] JABER A K, AWANG M B. Field-scale investigation of different miscible CO2-injection modes to improve oil recovery in a clastic highly heterogeneous reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(1):125-146. doi:10.1007/s13202-016-0255-5 [22] ALFARGE D, WEI M, BAI B, et al. Effect of moleculardiffusion mechanisim on CO2 huff-n-puff process in shale-oil reservoirs[C]. SPE 188003-MS, 2017. doi:10.2118/188003-MS [23] WILSON A. Experimental and numerical studies of CO2 EOR in unconventional reservoirs[J]. Journal of Petroleum Technology, 2017, 45-47. doi:10.2118/0117-0045-JPT [24] SUN J, ZOU A, SCHECHTER D. Experimental and numerical studies of CO2 EOR in unconventional liquid reservoirs with complex fracture networks[C]. SPE 179634-MS, 2016. doi:10.2118/179634-MS [25] ALHARTHY N, TEKLU T W, KAZEMI H, et al. Enhanced oil recovery in liquid-rich shale reservoirs:Laboratory to field[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(1):137-159. doi:10.2118/175034-MS [26] WEI B, ZHANG X, LIU J, et al. Supercritical CO2-EOR in an asphaltenic tight sandstone formation and the changes of rock petrophysical properties induced by asphaltene precipitation[J]. Journal of Petroleum Science and Engineering, 2020, 184:106515. doi:10.1016/j.petrol.2019.106515 [27] WAN T, SHENG J, SOLIMAN M Y, et al. Effect of fracture characteristics on behavior of fractured shaleoil reservoirs by cyclic gas injection[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(2):350-355. doi:10.2118/168880-PA [28] TOVAR F D, EIDE O, GRAUE A, et al. Experimental investigation of enhanced recovery in unconventional liquid reservoirs using CO2:A look ahead to the future of unconventional EOR[C]. SPE 169022-MS, 2014. doi:10.2118/169022-MS [29] YU Y, SHENG J J. Experimental evaluation of shale oil recovery from Eagle Ford core samples by nitrogen gas flooding[C]. SPE 179547-MS, 2016. doi:10.2118/179547-MS [30] WAN T, SHENG J J. Evaluation of the EOR potential in hydraulically fractured shale oil reservoirs by cyclic gas injection[J]. Petroleum Science & Technology, 2015, 33(7):812-818. doi:10.1080/10916466.2015.1010041 [31] SHENG J J, CHEN K. Evaluation of the EOR potential of gas and water injection in shale oil reservoirs[J]. Journal of Unconventional Oil and Gas Resources, 2014, 5:1-9. doi:10.1016/j.juogr.2013.12.001 [32] WEI B, GAO K, SONG T, et al. Nuclear-magnetic-resonance monitoring of mass exchange in a low-permeability matrix/fracture model during CO2 cyclic injection:A mechanistic study[C]. SPE 199345-PA, 2019. doi:10.2118/199345-PA [33] HAWTHORNE S B, GORECKI C D, SORENSEN J A, et al. Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO2[C]. SPE 167200-MS, 2013. doi:10.2118/167200-MS [34] CARPENTER C. A review of improved-oil-recovery methods in North American unconventional reservoirs[J]. Journal of Petroleum Technology, 2018, 70(1):42-44. doi:10.2118/0118-0042-JPT [35] GAMADI T, ELLDAKLI F, SHENG J J. Compositional simulation evaluation of EOR potential in shale oil reservoirs by cyclic natural gas injection[C]. Colorado:Unconventional Resources Technology Conference, 2014. doi:10.15530/URTEC-2014-1922690 [36] HOFFMAN B T. Comparison of various gases for enhanced recovery from shale oil reservoirs[C]. SPE 154329-MS, 2012. doi:10.2118/154329-MS [37] DONG J, WU S, XING G, et al. Factors affecting water alternating hydrocarbon gas miscible flooding in a low permeability reservoir[C]. International Petroleum Technology Conference. International Petroleum Technology Conference, 2019. doi:10.2523/IPTC-19063-MS [38] 廖广志,王强,王红庄,等. 化学驱开发现状与前景展望[J]. 石油学报, 2017, 38(2):196-207. doi:10.7623/syxb201702007 LIAO Guangzhi, WANG Qiang, WANG Hongzhuang, et al. Chemical flooding development status and prospect[J]. Acta Petrolei Sinica, 2017, 38(2):196-207. doi:10.7623/syxb201702007 [39] KATHEL P, MOHANTY K K. EOR in tight oil reservoirs through wettability alteration[C]. SPE 166281-MS, 2013. doi:10.2118/166281-MS [40] NGUYEN D, WANG D, OLADAPO A, et al. Evaluation of surfactants for oil recovery potential in shale reservoirs[C]. SPE 169085-MS, 2014. doi:10.2118/169085-MS [41] ZHANG Jin, WANG Dongmei, RAY Butler. Optimal salinity study to support surfactant imbibition into the Bakken Shale[C]. SPE 167142-MS, 2013. doi:10.2118/167142-MS [42] WANG D, ZHANG J, BUTLER R, et al. Flow rate behavior and imbibition comparison between Bakken and Niobrara Formations[C]. Unconventional Resources Technology Conference, Denver, Colorado, 2014. doi:10.15530/URTEC-2014-1920887 [43] ALVAREZ J O, NEOG A, JAIS A, et al. Impact of surfactants for wettability alteration in stimulation fluids and the potential for surfactant EOR in unconventional liquid reservoirs[C]. SPE 169001-MS, 2014. doi:10.2118/169001-MS [44] DAWSON M, NGUYEN D, CHAMPION N, et al. Designing an optimized surfactant flood in the Bakken[C]. SPE 175937-MS, 2015. doi:10.2118/175937-MS [45] WANG D, ZHANG J, BUTLER R, et al. Scaling laboratory data surfactant imbibition rates to the field in fractured shale formations[C]. Unconventional Resources Technology Conference, San Antonio, Texas, 2015. doi:10.15530/URTEC-2015-2137361 [46] LOTFOLLAHI M, BEYGI M R, ABOUIE A, et al. Optimization of surfactant flooding in tight oil reservoirs[C]. Unconventional Resources Technology Conference, Austin, Texas, 2017. doi:10.15530/URTEC-2017-2696038 [47] XU T, HOFFMAN T. Hydraulic fracture orientation for miscible gas injection eor in unconventional oil reservoirs[C]. Colorado:Unconventional Resources Technology Conference, 2013, 2013. doi:10.1190/urtec2013-189 [48] LIU P, ZHANG X, WU Y, et al. Enhanced oil recovery by air-foam flooding system in tight oil reservoirs:Study on the profile-controlling mechanisms[J]. Journal of Petroleum Science and Engineering, 2017, 150:208-216. doi:10.1016/j.petrol.2016.12.001 [49] 夏金娜. 致密油藏泡沫辅助空气驱技术研究[D]. 青岛:中国石油大学(华东), 2013. XIA Jinna. Research on foam assisted air flooding technology in tight reservoir[D]. Qingdao:China University of Petroleum (East China), 2013. [50] FENG L, XU L. Implications of shale oil compositions on surfactant efficacy for wettability alteration[C]. SPE 172974-MS, 2015. doi:10.2118/172974-MS [51] MORSY S, SHENG J J. Effect of water salinity on shale reservoir productivity[J]. Advances in Petroleum Exploration and Development, 2014, 8(1):9-14. doi:10.3968/5604 [52] XIE Q, MA D, WU J, et al. Low salinity waterflooding in low permeability sandstone:Coreflood experiments and interpretation by thermodynamics and simulation[C]. SPE 174592-MS, 2015. doi:10.2118/174592-MS [53] WANG D, BUTLER R, LIU H, et al. Flow-rate behavior and imbibition in shale[C]. SPE 138521-PA, 2011.doi:10.2118/138521-PA [54] YU Y, SHENG J J. Experimental investigation of light oil recovery from fractured shale reservoirs by cyclic water injection[C]. SPE 180378-MS, 2016. doi:10.2118/180378-MS [55] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3):329-340. doi:10.1306/10240808059 [56] FLETCHER A, DAVIS J. How EOR can be transformed by nanotechnology[C]. SPE 129531-MS, 2010. doi:10.2118/129531-MS [57] GIRALDO J, BENJUMEA P, LOPERA S, et al. Wettability alteration of sandstone cores by alumina-based nanofluids[J]. Energy & Fuels, 2013, 27(7):3659-3665. doi:10.1021/ef4002956 [58] SULEIMANOV B A, ISMAILOV F S, VELIYEV E F. Nanofluid for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2011, 78(2):431-437. doi:10.1016/j.petrol.2011.06.014 [59] ZABALA R, FRANCO C A, CORTéS F B. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil:A field test[C]. SPE 179677-MS, 2016. doi:10.2118/179677-MS [60] WANG M, ABEYKOON G A, ARGüELLES Vivas F J, et al. Novel wettability modifiers for improved oil recovery in tight oil reservoirs[C]. Colorado:Unconventional Resources Technology Conference, 2019. doi:10.15530/urtec-2019-1069 [61] WANG M, BAEK K H, ABEYKOON G A, et al. Oxygenated solvent as a novel additive for improved oil recovery in tight oil reservoirs[C]. SPE 195871-MS, 2019. doi:10.2118/195871-MS [62] BALASUBRAMANIAN S, CHEN P, BOSE S, et al. Recent advances in enhanced oil recovery technologies for unconventional oil reservoirs[C]. OTC 28973-MS, 2018. doi:10.4043/28973-MS [63] BAKER R, DIEVA R, JOBLING R, et al. The myths of waterfloods, EOR floods and how to optimize real injection schemes[C]. SPE 179536-MS, 2016. doi:10.2118/179536-MS |
[1] | ZHANG Deping, MA Feng, WU Yule, DONG Zehua. Optimization of Injection Technique of Corrosion Inhibitor in CO2-flooding Oil Recovery [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103-109. |
[2] | YANG Zhengming, MA Zhuangzhi, XIAO Qianhua, GUO Hekun, LUO Yutian. Method for All-scale Pore-throat Measurements in Tight Reservoir Cores and Its Application [J]. 西南石油大学学报(自然科学版), 2018, 40(3): 97-104. |
[3] | LIANG Meng, YUAN Haiyun, YANG Ying, YANG Yunbo, LIN Jiangtao. Research Progress on Miscible Gas Displacement and Determination of Minimum Miscibility Pressure [J]. 西南石油大学学报(自然科学版), 2017, 39(5): 101-112. |
[4] | SU Wei, HOU Jirui, LIU Juan, ZHU Daoyi, XI Yuanyuan. Evaluation of EOR Effect of Gas Huff-n-puff in Fractured Vuggy Carbonate Reservoirs [J]. 西南石油大学学报(自然科学版), 2017, 39(1): 133-139. |
[5] | WANG Jian1,2*, KONG Qingming2, DONG Xiongying2. The Formation Characteristics and Exploration Potential of Tight Oil in#br# Erlian Basin [J]. 西南石油大学学报(自然科学版), 2016, 38(2): 11-19. |
[6] | Liu Zupeng1*, Li Zhaomin2. An Experimental Study on Anti-channeling Technology with Foam in#br# CO2 Flooding [J]. 西南石油大学学报(自然科学版), 2015, 37(5): 117-122. |
[7] | Wu Jian1,2*, Chang Yuwen1, Li Jia1, Liang Tao1, Guo Xiaofei1. Mechanisms of Low Salinity Waterflooding Enhanced Oil Recovery#br# and Its Application [J]. 西南石油大学学报(自然科学版), 2015, 37(5): 145-151. |
[8] | Xie Xiaoqing1,2*, Feng Guozhi1,2, Liu Liwei1,2, Shi Yao1,2, Zeng Yang1,2. The Distribution of Residual Polymer and the Synergistic Action of Binary Combination Flooding After Polymer Flooding [J]. 西南石油大学学报(自然科学版), 2015, 37(4): 135-140. |
[9] | Chen Zhanqing, Yu Bangyong*. Research Progress of Seepage Mechanics in Rock Mass Affected by Mining [J]. 西南石油大学学报(自然科学版), 2015, 37(3): 69-76. |
[10] | Kang Yili1*, Zhang Dujie1, You Lijun1, Xu Chengyuan1, Yu Haifeng2. Mechanism and Control Methods of the Working Fluid Damages in Fractured Tight Reservoirs [J]. 西南石油大学学报(自然科学版), 2015, 37(3): 77-84. |
[11] | Li Baozhen1,2*, Zhang Xiansong1,2, Kang Xiaodong1,2, Tang Engao1,2, Wang Tao3. Optimization of Gas Flooding in Offshore Tight Reservoirs with Response Surface Method [J]. 西南石油大学学报(自然科学版), 2015, 37(2): 101-106. |
[12] | Liu Rui1,2*, Pu Wanfen1,2, Peng Huan2, Zhao Tianhong3, Shang Xiaopei2. Preparation of Hyperbranched Association Polyacrylamide and Its Oil Displacement Properties [J]. 西南石油大学学报(自然科学版), 2015, 37(2): 145-152. |
[13] | Wei Xiaodong1,2*, Liu Qingyou3. The Status and Development in Mechanical Behavior of Deepwater Well-testing Strings [J]. 西南石油大学学报(自然科学版), 2015, 37(1): 172-178. |
[14] | Jiang Wenchao1, Ye Zhongbin1,2**, Gou Shaohua1,2, Liu Xiangjun1,3, Song Zewen2. Synthesis of Imidazoline Modified Acrylamide-based Copolymer as EOR Chemical [J]. 西南石油大学学报(自然科学版), 2014, 36(6): 143-149. |
[15] | Wang Jiexiang, Wang Tengfei, Han Lei, Ren Wenlong. Experimental Study of Improved Oil Recovery Through Air Foam Flooding in Ultra-low Permeability Reservoir [J]. 西南石油大学学报(自然科学版), 2013, 35(5): 130-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||