[1] 游利军,康毅力,周洋,等. 油气储层氧敏性概念、机理与意义[J]. 石油学报, 2021, 42(2):186-197. doi:10.7623/syxb202102004 YOU Lijun, KANG Yili, ZHOU Yang, et al. Concept, mechanism and significance of oxidation sensitivity of oil and gas reservoirs[J]. Acta Petrolei Sinica, 2021, 42(2): 186-197. doi: 10.7623/syxb202102004 [2] 滕学清,康毅力,张震,等. 塔里木盆地深层中高渗砂岩储层钻井完井损害评价[J]. 石油钻探技术, 2018, 46(1):37-43. doi:10.11911/syztjs.2018007 TENG Xueqing, KANG Yili, ZHANG Zhen, et al. Evaluation of drilling and completion damage in deep medium-to-high permeability sandstone reservoir in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37-43. doi: 10.11911/syztjs.2018007 [3] 司念亭,冯硕,方培林,等. 垦利10-1油田修井作业储层保护技术[J]. 中国海上油气, 2020, 32(3):130-135. doi:10.11935/j.issn.16731506.2020.03.016 SI Nianting, FENG Shuo, FANG Peilin, et al. Reservoir protection techniques during workover in KL10-1 Oilfield[J]. China Offshore Oil and Gas, 2020, 32(3): 130-135. doi: 10.11935/j.issn.1673-1506.2020.03.016 [4] YOU Lijun, KANG Yili, CHEN Zhangxin, et al. Optimized fluids improve production in Tarim horizontal wells[J]. Oil & Gas Journal, 2014, 112(5): 22-26 [5] 康毅力,吴志均,汪建军,等. 碱敏损害是塔里木盆地东河塘构造东河1 井减产的主因[J]. 西南石油学院学报, 1997, 19(4):14-20. KANG Yili, WU Zhijun, WANG Jianjun, et al. Alkali sensitivity damage is the main cause of production reduction in Well Donghe 1 in Donghetang structure, Tarim Basin[J]. Journal of Southwest Petroleum Institute, 1997, 19(4): 14-20. [6] 康毅力,罗平亚. 储层保护系统工程:实践与认识[J]. 钻井液与完井液, 2007, 24(1):1-7, 95. doi:10.3969/j.issn.10015620.2007.01.001 KANG Yili, LUO Pingya. System engineering of reservoir preservation: Practice and theory[J]. Drilling Fluid & Completion Fluid, 2007, 24(1): 1-7, 95. doi: 10.3969/j.issn.10015620.2007.01.001 [7] 束青林,张本华,高喜龙,等. 埕岛极浅海油田高速高效开发调整关键技术[J]. 油气地质与采收率, 2020, 27(3):1-12. doi:10.13673/j.cnki.cn371359/te.2020.03.001 SHU Qinglin, ZHANG Benhua, GAO Xilong, et al. Key technologies of high-speed and high-efficiency development and adjustment of Chengdao shallower sea oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 1-12. doi: 10.13673/j.cnki.cn371359/te.2020.03.001 [8] 徐云龙,张洪安,李继东,等. 渤海湾盆地东濮凹陷陆相页岩层系储集特征及其主控因素[J]. 断块油气田, 2022, 29(6):729-735. doi:10.6056/dkyqt202206002 XU Yunlong, ZHANG Hongan, LI Jidong, et al. Reservoir characteristics and its main controlling factors of continental shale strata in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 729-735. doi: 10.6056/dkyqt202206002 [9] JONES J R O. Influence of chemical composition of water on clay blocking of permeability[J]. Journal of Petroleum Technology, 1964, 16(4): 441-446. doi: 10.2118/631-PA [10] 胡文军,罗平亚,白杨,等. 新型高温高密度盐水钻井液研究[J]. 钻井液与完井液, 2017, 34(3):1-10. doi:10.3969/j.issn.10015620.2017.03.001 HU Wenjun, LUO Pingya, BAI Yang, et al. Study on a new high temperature high density saltwater drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 1-10. doi: 10.3969/j.issn.10015620.2017.03.001 [11] 康毅力,刘燕英,游利军,等. 高渗砂岩油藏水平井储层保护钻井完井液[J]. 西南石油大学学报(自然科学版), 2014, 36(2):178-184. doi:10.11885/j.issn.1674-5086.2012.04.05.01 KANG Yili, LIU Yanying, YOU Lijun, et al. Drillng and completion fluids for high permeability sandstone reservoir protection in horizontal well[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(2): 178-184. doi: 10.11885/j.issn.1674-5086.2012.04.05.01 [12] 游利军,孟森,康毅力,等. 气藏型储气库储层损害机理与保护技术对策[J]. 油气藏评价与开发, 2021, 11(3):395-403. doi:10.13809/j.cnki.cn321825/te.2021.03.015 YOU Lijun, MENG Sen, KANG Yili, et al. Formation damage mechanism and protection measures for gas field storage[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 395-403. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.015 [13] 游利军,陈杨,康毅力,等. 低渗气藏入井液损害实验评价的产能指数法[J]. 钻井液与完井液, 2020, 37(5):620-625. doi:10.3969/j.issn.10015620.2020.05.014 YOU Lijun, CHEN Yang, KANG Yili, et al. Productivity index method for experimental evaluation of working fluid damage in low permeability gas reservoir[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 620-625. doi: 10.3969/j.issn.10015620.2020.05.014 [14] 贺垠博,蒋官澄,董腾飞,等. 盐响应聚合物刺激响应机理及在饱和盐水钻井液中的应用[J]. 石油勘探与开发,2020,47(5):1052-1058. doi:10.11698/PED.2020.05.19 HE Yinbo, JIANG Guancheng, DONG Tengfei, et al. Stimulus-responsive mechanism of salt-responsive polymer and its application in saturated saltwater drilling fluid[J]. Petroleum Exploration and Development, 2020, 47(5): 1052-1058. doi: 10.11698/PED.2020.05.19 [15] 魏裕森,熊友明,周书胜,等. 海上油气田智能破胶完井液体系[J]. 钻井液与完井液, 2021, 38(2):226-230. doi:10.3969/j.issn.10015620.2021.02.016 WEI Yusen, XIONG Youming, ZHOU Shusheng, et al. Study on intelligent gel breaking completion fluid system in offshore oil-gas field[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 226-230. doi: 10.3969/j.issn.10015620.2021.02.016 [16] 高志兴. 水平井固井技术研究与应用[J]. 石油和化工设备, 2021, 24(4):112-114. GAO Zhixing. Research and application of horizontal well cementing technology[J]. Petro & Chemical Equipment, 2021, 24(4): 112-114. [17] WANG Chaoqun, DING Wei. Fabrication of a state of the art mesh lock polymer for water based solid free drilling fluid[J]. Scientific Reports, 2021, 11: 18870. doi: 10.1038/s41598-021-98379-w [18] 靳金荣,滕春鸣,刁意舒,等. 赵东平台C/D区块水平井钻井完井配套技术[J]. 石油钻探技术, 2011, 39(5):27-30. doi:10.3969/j.issn.10010890.2011.05.006 JIN Jinrong, TENG Chunming, DIAO Yishu, et al. Integrated drilling and completion technology of Zhaodong platform in C/D blocks[J]. Petrleum Drilling Techniques, 2011, 39(5): 27-30. doi: 10.3969/j.issn.10010890.2011.05.006 [19] 董怀荣. 我国钻井液净化和不落地系统现状与对策研究[J]. 西部探矿工程, 2021, 33(10):69-73. doi:10.3969/j.issn.10045716.2021.10.025 DONG Huairong. Research on current situation and countermeasures of drilling fluid purification and landing system in China[J]. West-China Exploration Engineering, 2021, 33(10): 69-73. doi: 10.3969/j.issn.10045716.2021.10.025 [20] 郑永哲,杨士明,于学良,等. 大港滩海赵东区块水平井裸眼砾石充填防砂完井技术[J]. 石油钻探技术,2009,37(4):88-92. doi:10.3969/j.issn.1001-0890.2009.04.023 ZHENG Yongzhe, YANG Shiming, YU Xueliang, et al. Horizontal well open hole gravel packing sand control completion technique used in Zhaodong Block Dagang Offshore[J]. Petroleum Drilling Techniques, 2009, 37(4): 88-92. doi: 10.3969/j.issn.1001-0890.2009.04.023 [21] 张明,李凡,袁洪水,等. FLO PRO无固相钻开液对绥中36-1油田水平井的储层保护[J]. 石化技术, 2015, 22(5):189-191. doi:10.3969/j.issn.1006-0235.2015.05.122 ZHANG Ming, LI Fan, YUAN Hongshui, et al. Application of FLO-PRO solids free drill-in fluid for reservior protection in horizontal wells in Suizhong 36-1 Oilfield[J]. Petrochemical Industry Technology, 2015, 22(5): 189-191. doi: 10.3969/j.issn.1006-0235.2015.05.122 [22] 秦江,宋凯,文华,等. 纳米低密度水泥浆体系在页岩油水平井固井中的应用[J]. 长江大学学报(自然科学版),2021,18(2):55-61. doi:10.3969/j.issn.16731409.2021.02.009 QIN Jiang, SONG Kai, WEN Hua, et al. Application of nano low density cement slurry system in horizontal well cementing of shale oil[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(2): 55-61. doi: 10.3969/j.issn.16731409.2021.02.009 [23] 李鹏晓,孙富全,何沛其,等. 紧密堆积优化固井水泥浆体系堆积密实度[J]. 石油钻采工艺, 2017, 39(3):307-312. doi:10.13639/j.odpt.2017.03.010 LI Pengxiao, SUN Fuquan, HE Peiqi, et al. Packing compactness of cementing slurry system for close packing optimization[J]. Oil Drilling & Production Technology, 2017, 39(3): 307-312. doi: 10.13639/j.odpt.2017.03.010 [24] YE Qing, CHEN Huxing, WANG Yuqing, et al. Effect of MgO and gypsum content on long-term expansion of low heat Portland slag cement with slight expansion[J]. Cement and Concrete Composites, 2004, 26(4): 331-337. doi: 10.1016/S0958-9465(02)00145-2 [25] 陈晓华,狄伟. 针对裂缝性地层的低密度高强度韧性水泥浆体系研究[J]. 钻井液与完井液, 2021, 38(1):109-115. doi:10.3969/j.issn.10015620.2021.01.018 CHEN Xiaohua, DI Wei. Low-density and strength cement slurry for fractured formation[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 109-115. doi: 10.3969/j.issn.10015620.2021.01.018 [26] 宋鹤,杨威,唐俊峰,等. 耐高温高压超高密度水泥浆体系的室内研究[J]. 钻井液与完井液, 2021, 38(1):116-121. doi:10.3969/j.issn.10015620.2021.01.019 SONG He, YANG Wei, TANG Junfeng, et al. Laboratory study on an HTHP ultra-high density cement slurry[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 116-121. doi: 10.3969/j.issn.10015620.2021.01.019 [27] POURMAZAHERI Y, SOLTANIAN H. Application of particle size distribution engineering and nanotechnology to cement recipes for some Iranian offshore oilfields[J]. Journal of Petroleum Science and Technology, 2015, 5(2): 70-83. doi: 10.22078/JPST.2015.504 [28] ZHENG Jia, YOU Fuchang. A new type of low density cement slurry suitable for sandstone formation[J]. Materials Science and Engineering, 2021, 1133: 012005. doi: 10.1088/1757-899X/1133/1/012005 [29] 黄占盈,周文军,谢文敏,等. 苏里格气田易漏井固井水泥浆体系的研究与应用[J]. 石油钻采工艺, 2014, 36(3):48-51. doi:10.13639/j.odpt.2014.03.012 HUANG Zhanying, ZHOU Wenjun, XIE Wenmin, et al. Research and application of cement slurry system in Sulige leakage wells[J]. Oil Drilling & Production Technology, 2014, 36(3): 48-51. doi: 10.13639/j.odpt.2014.03.012 [30] ZHANG Huali, YANG Sheng, LIU Dongming, et al. Wellbore cleaning technologies for shale-gas horizontal wells: Difficulties and countermeasures[J]. Natural Gas Industry B, 2020, 7(2): 190-195. doi: 10.1016/j.ngib.2020.03.003 [31] 寸锡宏,赵霞,王超,等. 低渗透油藏清洁屏蔽暂堵体系评价[J]. 油田化学, 2022, 39(4):630-635. doi:10.19346/j.cnki.1000-4092.2022.04.010 CUN Xihong, ZHAO Xia, WANG Chao, et al. Evaluation of clean shielding temporary plugging system in lowpermeability reservoir[J]. Oilfield Chemistry, 2022, 39(4): 630-635. doi: 10.19346/j.cnki.1000-4092.2022.04.010 |