Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2024, Vol. 46 ›› Issue (1): 1-20.DOI: 10.11885/j.issn.1674-5086.2022.06.18.02
• GEOLOGY EXPLORATION • Next Articles
TAN Fengqi1,2, MA Chunmiao1,2, LI Xiankun1,2, JING Yuqian1,2
Received:
2022-06-18
Published:
2024-02-01
CLC Number:
TAN Fengqi, MA Chunmiao, LI Xiankun, JING Yuqian. Application and Prospect of Fluid Mobility in Oilfield Development[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 1-20.
[1] 黄兴,李天太,王香增,等. 致密砂岩储层可动流体分布特征及影响因素——以鄂尔多斯盆地姬塬油田延长组长8 油层组为例[J]. 石油学报, 2019, 40(5):557-567. doi:10.7623/syxb201905005 HUANG Xing, LI Tiantai, WANG Xiangzeng, et al. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoir: A case study of Chang 8 oil formation of Yanchang Formation in Jiyuan Oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2019, 40(5): 557-567. doi: 10.7623/syxb201905005 [2] BRIGHAM W E. Fluid flow in various patterns and implications for EOR pilot flooding[J]. SPE Reservoir Evaluation and Engineering, 2004, 7(3): 170–174. doi: 10.2118/87661-PA [3] ROSENBRAND E, FABRICIUS I L, FISHER Q, et al. Permeability in rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis[J]. Marine and Petroleum Geology, 2015, 64: 189-202. doi: 10.1016/j.marpetgeo.2015.02.009 [4] LI Pan, SUN Wei, WU Bolin, et al. Occurrence characteristics and influential factors of movable fluids in pores with different structures of Chang 63 Reservoir, Huaqing Oilfield, Ordos Basin, China[J]. Marine and Petroleum Geology, 2018, 97: 480–492. doi: 10.1016/j.marpetgeo.2018.07.033 [5] CLARKSON C R, JENSEN J L, PEDERSEN P K, et al. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J]. AAPG Bulletin, 2012, 96(2): 355–374. doi: 10.1306/05181110171 [6] 王为民,郭和坤,叶朝辉. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6):40-44. WANG Weimin, GUO Hekun, YE Chaohui. The evaluation of development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40–44. [7] 马淼,孙卫,刘登科,等. 致密砂岩储层可动流体赋存特征及影响因素研究——以姬塬油田长6储层为例[J]. 石油地质与工程, 2016, 30(6):64-68. doi:10.3969/j.issn.1673-8217.2016.06.015 MA Miao, SUN Wei, LIU Dengke, et al. Study on the occurrence characteristics and influencing factors of movable fluid in low permeability sandstone reservoir: Taking Chang 6 reservoir in Jiyuan Oilfield as an example[J]. Petroleum Geology and Engineering, 2016, 30(6): 64–68. doi: 10.3969/j.issn.1673-8217.2016.06.015 [8] ZHANG Fan, XIAO Hanmin, JIANG Zhenxue, et al. Influence of pore throat structure and the multiphases fluid seepage on mobility of tight oil reservoir[J]. Lithosphere, 2021(S1): 5525670. doi: 10.2113/2021/5525670 [9] 周文宇,王小明,曾凡桂,等. 鸡西盆地主力煤层水可动性及其孔渗控制[J]. 地质科技通报, 2021, 40(3):124-131. doi:10.19509/j.cnki.dzkq.2021.0305 ZHOU Wenyu, WANG Xiaoming, ZENG Fangui, et al. Water mobility of the main coal seam and its control of porosity and permeability in Jixi Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 124–131. doi: 10.19509/j.cnki.dzkq.2021.0305 [10] 廖作才,孙军昌,杨正明,等. 低渗火山岩气藏可动流体百分数及其影响因素[J]. 西南石油大学学报(自然科学版),2014,36(1):113-120. doi:10.11885/j.issn.1674-5086.2012.02.16.02 LIAO Zuocai, SUN Junchang, YANG Zhengming, et al. Study on the movable fluid saturation and its influencing factors of low permeability volcanic gas reservoir[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2014, 36(1): 113–120. doi: 10.11885/j.issn.1674-5086.2012.02.16.02 [11] 杨正明,郭和坤,姜汉桥,等. 火山岩气藏不同岩性核磁共振实验研究[J]. 石油学报, 2009, 30(3):400-403. doi:10.3321/j.issn:0253-2697.2009.03.014 YANG Zhengming, GUO Hekun, JIANG Hanqiao, et al. Experimental study on different lithologic rock of volcanic gas reservoir using nuclear magnetic resonance technique[J]. Acta Petrolei Sinica, 2009, 30(3): 400–403. doi: 10.3321/j.issn:0253-2697.2009.03.014 [12] 姚艳斌,刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1):181-189. doi:10.13225/j.cnki.jccs.2017.4002 YAO Yanbin, LIU Dameng. Study on physical properties and fluid characteristics of shale reservoir based on NMR relaxation spectroscopy[J]. Journal of China Coal Society, 2018, 43(1): 181–189. doi: 10.13225/j.cnki.jccs.2017.4002 [13] WU Hao, ZHANG Chunlin, JI Youliang, et al. An improved method of characterizing pore structure in tight oil reservoirs: Integrated NMR and constant-rate-controlled porosimetry data[J]. Journal of Petroleum Science and Engineering, 2018, 166: 778–796. doi: 10.1016/j.petrol.2018.03.065 [14] YAO Yanbin, LIU Dameng, CHE YAO, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371–1380. doi: 10.1016/j.fuel.2009.11.005 [15] ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)[J]. Marine and Petroleum Geology, 2018, 89: 775–785. doi: 10.1016/j.marpetgeo.2017.11.015 [16] ZHANG Fan, JIANG Zhenxue, SUN Wei, et al. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test[J]. Marine and Petroleum Geology, 2019, 109: 208–222. doi: 10.1016/j.marpetgeo.2019.06.019 [17] LI Jinbu, LU Shuangfang, CHEN Guohui, et al. A new method for measuring shale porosity with low-field nuclear magnetic resonance considering non-fluid signals[J]. Marine and Petroleum Geology, 2019, 102: 535–543. doi: 10.1016/j.marpetgeo.2019.01.013 [18] GAO Hui, LI Huazhou. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance technique[J]. Journal of Petroleum Science and Engineering, 2015, 133: 258–267. doi: 10.1016/j.petrol.2015.06.017 [19] 刘凯文,熊淑华,滕奇志. 基于U-net的铸体岩石薄片图像孔隙自动提取[J]. 智能计算机与应用, 2021, 11(11):68-75. doi:10.3969/j.issn.2095-2163.2021.11.015 LIU Kaiwen, XIONG Shuhua, TENG Qizhi. Automatic extraction of pores in slice image of rock castings based on U-net[J]. Intelligent Computer and Applications, 2021, 11(11): 68–75. doi: 10.3969/j.issn.2095-2163.2021.11.015 [20] 张启迪,田亚娟. 基于超像素与特征融合的砂岩铸体薄片组分识别方法[J]. 光源与照明, 2022(2):113-115. ZHANG Qidi, TIAN Yajuan. Component recognition method of sandstone casting slice based on super pixel and feature fusion[J]. Lamps and Lighting, 2022(2): 113–115. [21] 王秀影,吴通,蔡军,等. 饶阳凹陷页岩油储层应力敏感规律[J]. 钻井液与完井液, 2020, 37(2):185-191. doi:10.3969/j.issn.1001-5620.2020.02.009 WANG Xiuying, WU Tong, CAI Jun, et al. Patterns of stress sensitivity of the shale oil reservoirs in Raoyang Depression[J]. Drilling Fluid and Completion Fluid, 2020, 37(2): 185–191. doi: 10.3969/j.issn.1001-5620.2020.02.009 [22] 张关龙,陈世悦,鄢继华. 东营凹陷郑家王庄地区沙河街组粘土矿物特征及其与储层伤害的关系[J]. 中国石油大学学报(自然科学版), 2006, 30(6):7-12. doi:10.3321/j.issn:1000-5870.2006.06.002 ZHANG Guanlong, CHEN Shiyue, YAN Jihua. Relation between clay mineral characteristics and formation damage of Shahejie group of Zhengjia–Wangzhuang areas in Dongying Depression[J]. Journal of China University of Petroleum, 2006, 30(6): 7–12. doi: 10.3321/j.issn:1000-5870.2006.06.002 [23] 杜谷,王坤阳,冉敬,等. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J]. 岩矿测试, 2014, 33(5):625-633. doi:10.3969/j.issn.0254-5357.2014.05.003 DU Gu, WANG Kunyang, RAN Jing, et al. Application of IR/SEM and other modern instruments for mineral identification[J]. Rock and Mineral Analysis, 2014, 33(5): 625-633. doi: 10.3969/j.issn.0254-5357.2014.05.003 [24] 白斌,朱如凯,吴松涛,等. 非常规油气致密储层微观孔喉结构表征新技术及意义[J]. 中国石油勘探,2014,19(3): 78-86. doi:10.3969/j.issn.1672-7703.2014.03.010 BAI Bin, ZHU Rukai, WU Songtao, et al. New microthroat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2014, 19(3): 78–86. doi: 10.3969/j.issn.1672-7703.2014.03.010 [25] 张启燕,刘晓,杨玠,等. 微区X射线荧光成像技术在岩心分析中的应用[J]. 光谱学与光谱分析, 2022,42(7):2200-2206. doi:10.3964/j.issn.1000-0593-(2022)07-2200-07 ZHANG Qiyan, LIU Xiao, YANG Jie, et al. Application of micro X-ray fluorescence imaging technology in the core analysis[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2200–2206. doi: 10.3964/j.issn.1000-0593(2022)07-2200-07 [26] 毕明威,陈世悦,周兆华,等. 鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J]. 天然气地球科学, 2015, 26(10):1851-1861. doi:10.11764/j.issn.1672-1926.2015.10.1851 BI Mingwei, CHEN Shiyue, ZHOU Zhaohua, et al. Characteristics and significance of microscopic pore structure in tight sandstone reservoir of the 8th Member of Lower Shihezi Formation in the Su6 Area of Sulige Gas Field[J]. Natural Gas Geoscience, 2015, 26(10): 1851–1861. doi: 10.11764/j.issn.1672-1926.2015.10.1851 [27] 马文忠,王永宏,张三,等. 鄂尔多斯盆地陕北地区长7段页岩油储层微观特征及控制因素[J]. 天然气地球科学, 2021, 32(12):1810-1821. doi:10.11764/j.issn.1672-1926.2021.10.002 MA Wenzhong, WANG Yonghong, ZHANG San, et al. The microscopic characteristics and controlling factors of Chang 7 Member shale oil reservoir in northern Shaanxi, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1810–1821. doi: 10.11764/j.issn.1672-1926.2021.10.002 [28] 王瑞飞,吕新华,国殿斌,等. 深层高压低渗砂岩油藏储层微观孔喉特征:以东濮凹陷文东油田沙三中段油藏为例[J]. 现代地质, 2012, 26(4):762-768. doi:10.3969/j.issn.1000-8527.2012.04.018 WANG Ruifei, LÜ Xinhua, GUO Dianbin, et al. Characteristics of micro-pore throat in high pressure and lowpermeability sandstone reservoir of deep section: Taking the middle of the Third Member of Shahejie Formation in Wendong Oilfield, Dongpu Sag as an example[J]. Geoscience, 2012, 26(4): 762–768. doi: 10.3969/j.issn.1000-8527.2012.04.018 [29] NIE Renshi, ZHOU Jie, CHEN Zhangxin, et al. Pore structure characterization of tight sandstones via a novel integrated method: A case study of the Sulige Gas Field, Ordos Basin (northern China)[J]. Journal of Asian Earth Sciences, 2021, 213: 104739. doi: 10.1016/j.jseaes.2021.104739 [30] WANG Liang, ZHAO Ning, SIMA Liqiang, et al. Pore structure characterization of the tight reservoir: Systematic integration of mercury injection and nuclear magnetic resonance[J]. Energy and Fuels, 2018, 32(7): 7471–7484. doi: 10.1021/acs.energyfuels.8b01369 [31] XIAO Dianshi, LU Shaungfang, YANG Jinxiu, et al. Classifying multiscale pores and investigating their relationship with porosity and permeability in tight sandstone gas reservoirs[J]. Energy and Fuels, 2017, 31(9): 9188–9200. doi: 10.1021/acs.energyfuels.7b01487 [32] 张全培,王海红,刘美荣,等. 超低渗透储层全孔径分布及其分形特征研究[J]. 中国矿业大学学报, 2020, 49(6):1137-1149. doi:10.13247/j.cnki.jcumt.001159 ZHANG Quanpei, WANG Haihong, LIU Meirong, et al. Study of the full pore size distribution and fractal characteristics of ultra-low permeability reservoir[J]. Journal of China University of Mining and Technology, 2020, 49(6): 1137–1149. doi: 10.13247/j.cnki.jcumt.001159 [33] ZHU Yurui, LU Zhengyuan, FENG Mingshi, et al. An improved method to characterize the full-scale pore system and dual pore model of tight sands[J]. Interpretation, 2019, 8(3): 1–50. doi: 10.1190/int-2019-0147.1 [34] 戚楠. 储层微观孔隙结构表征研究进展[J]. 石油化工应用, 2020, 39(11): 17-22. doi:10.3969/j.issn.1673-5285.2020.11.004 QI Nan. Research progress of microscopic pore structure characterization of reservoir[J]. Petrochemical Industry Application, 2020, 39(11): 17–22. doi: 10.3969/j.issn.1673-5285.2020.11.004 [35] 林潼,冉启贵,魏红兴,等. 库车坳陷迪北地区致密砂岩孔喉形态特征及其对储层的影响[J]. 石油实验地质, 2015, 37(6):30-37. doi:10.11781/sysydz201506696 LIN Tong, RAN Qigui, WEI Hongxing, et al. Pore-throat characteristics of tight sandstones and its influence on reservoirs in Dibei Area of the Kuqa Depression[J]. Petroleum Geology and Experiment, 2015, 37(6): 30–37. doi: 10.11781/sysydz201506696 [36] 汪贺,师永民,徐大卫,等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5):21-30. doi:10.13673/j.cnki.cn37-1359/te.2019.05.003 WANG He, SHI Yongmin, XU Dawei, et al. Unconventional reservoir pore structure characterization techniques and progress[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 21–30. doi: 10.13673/j.cnki.cn37-1359/te.2019.05.003 [37] 张征,商少石,张志炳,等. 基于氮吸附法的页岩有机孔隙结构表征[J]. 地质与勘探, 2021, 57(6): 1408-1415. doi:10.12134/j.dzykt.2021.06.021 ZHANG Zheng, SHANG Shaoshi, ZHANG Zhibing, et al. Characterization of shale organic-pore structure using the nitrogen adsorption method[J]. Geology and Exploration, 2021, 57(6): 1408–1415. doi: 10.12134/j.dzykt.2021.06.021 [38] 郑可,徐怀民,陈建文. 低渗储层可动流体核磁共振研究[J]. 现代地质, 2013, 27(3):710-718. doi:10.3969/j.issn.1000-8527.2013.03.024 ZHENG Ke, XU Huaimin, CHEN Jianwen. Movable fluid study of low permeability reservoir with nuclear magnetic resonance technology[J]. Geoscience, 2013, 27(3): 710–718. doi: 10.3969/j.issn.1000-8527.2013.03.024 [39] 吴海科,曹凯,赵方方. 低渗沉积岩可动流体饱和度核磁共振实验[J]. 天然气地球科学, 2021, 32(3):457-463. doi:10.11764/j.issn.1672-1926.2020.09.011 WU Haike, CAO Kai, ZHAO Fangfang. NMR experimental study of movable fluid saturation in low permeability sedimentary rocks[J]. Natural Gas Geoscience, 2021, 32(3): 457–463. doi: 10.11764/j.issn.1672-1926.2020.09.011 [40] 李海波,郭和坤,王学武,等. 岩心润湿性对核磁共振可动流体T2截止值的影响[J]. 西安石油大学学报(自然科学版),2015,30(5):43-47. doi:10.3969/j.issn.1673-064X.2015.05.007 LI Haibo, GUO Hekun, WANG Xuewu, et al. Influence of core wettability on T2 cutoff value of NMR movable fluid[J]. Journal of Xi'an Shiyou University (Natural Science), 2015, 30(5): 43–47. doi: 10.3969/j.issn.1673-064X.2015.05.007 [41] 霍迎冬. 核磁共振技术在致密油储层流体饱和度分析中的应用研究[J]. 西部探矿工程, 2018, 30(6):107-109. doi:10.3969/j.issn.1004-5716.2018.06.040 HUO Yingdong. Application of NMR in fluid saturation analysis of tight oil reservoirs[J]. West-China Exploration Engineering, 2018, 30(6): 107–109. doi: 10.3969/j.issn.1004-5716.2018.06.040 [42] 孙中良,李志明,申宝剑,等. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 2022, 44(5):930-940. doi:10.11781/sysydz202205930 SUN Zhongliang, LI Zhiming, SHEN Baojian, et al. NMR technology in reservoir evaluation for shale oil and shale gas[J]. Petroleum Geology and Experiment, 2022, 44(5): 930–940. doi: 10.11781/sysydz202205930 [43] DONG Xu, SHEN Luyi, LIU Xuefeng, et al. NMR characterization of a tight sand's pore structures and fluid mobility: An experimental investigation for CO2 EOR potential[J]. Marine and Petroleum Geology, 2020, 118: 104460. doi: 10.1016/j.marpetgeo.2020.104460 [44] 付晓燕,罗静兰,杨勇,等. 致密砂岩气藏气水驱替微观渗流特征研究——以苏南上古生界盒8、山1 储层为例[J]. 石油地质与工程, 2015, 29(6):131-134. doi:10.3969/j.issn.1673-8217.2015.06.036 FU Xiaoyan, LUO Jinglan, YANG Yong, et al. Study on micro percolation characteristics of gas water displacement in tight sandstone gas reservoirs: A case study of Upper Paleozoic He 8 and Shan 1 reservoirs in southern Jiangsu[J]. Petroleum Geology and Engineering, 2015, 29(6): 131–134. doi: 10.3969/j.issn.1673-8217.2015.06.036 [45] 李明,朱玉双,李文宏,等. CO2 驱微观可视化技术在超低渗储层中的应用可行性研究:以鄂尔多斯盆地为例[J]. 现代地质,2019,33(4):911-918. doi:10.19657/j.geoscience.1000-8527.2019.04.22 LI Ming, ZHU Yushuang, LI Wenhong, et al. Feasibility study on applying CO2-flooding micro-visualization technology in ultra-low permeability reservoirs: A case study in Ordos Basin[J]. Geoscience, 2019, 33(4): 911–918. doi: 10.19657/j.geoscience.1000-8527.2019.04.22 [46] 全洪慧,朱玉双,张洪军,等. 储层孔隙结构与水驱油微观渗流特征——以安塞油田王窑区长6油层组为例[J]. 石油与天然气地质, 2011, 32(6):952-960. doi:10.11743/ogg20110620 QUAN Honghui, ZHU Yushuang, ZHANG Hongjun, et al. Reservoir pore structure and micro-flow characteristics of waterflooding: A case study from Chang 6 reservoir of Wangyao Block in Ansai Oilfield[J]. Oil and Gas Geology, 2011, 32(6): 952–960. doi: 10.11743/ogg20110620 [47] 牛保伦,齐桂雪,谭肖. 一种高仿真耐温耐压微观可视化模型及应用[J]. 石油与天然气化工, 2018, 47(4):57-61, 72. doi:10.3969/j.issn.1007-3426.2018.04.011 NIU Baolun, QI Guixue, TAN Xiao. A model of high-simulation and heat-pressure resistance micro-visualization and its application[J]. Chemical Engineering of Oil & Gas, 2018, 47(4): 57–61, 72. doi: 10.3969/j.issn.1007-3426.2018.04.011 [48] 邓佳,吕子健,张奇,等. 页岩储层纳微米孔隙CO2/CH4吸附及驱替特性研究进展[J]. 力学学报,2021,53(10):2880-2890. doi:10.6052/0459-1879-21-292 DENG Jia, LÜ Zijian, ZHANG Qi, et al. Review on CO2/CH4 adsorption and displacement characteristics of micronano pores in shale reservoir[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2880-2890. doi: 10.6052/0459-1879-21-292 [49] 刘峰,黄杨杨. 基于压汞、氮气及二氧化碳吸附的页岩孔隙结构研究[J]. 中国煤层气, 2021, 18(2):8-12. doi:10.3969/j.issn.1672-3074.2021.02.002 LIU Feng, HUANG Yangyang. Research on pore structure of shale based on high pressure mercury injection, nitrogen adsorption and carbon dioxide adsorption[J]. China Coalbed Methane, 2021, 18(2): 8–12. doi: 10.3969/j.issn.1672-3074.2021.02.002 [50] 范鹏鹏,芦升彦. 超临界CO2 强化开采煤层气研究进展[J]. 当代化工, 2021(7):1681-1684. doi:10.3969/j.issn.1671-0460.2021.07.037 FAN Pengpeng, LU Shengyan. Research progress of supercritical CO2 enhanced recovery of coalbed methane[J]. Contemporary Chemical Industry, 2021(7): 1681–1684. doi: 10.3969/j.issn.1671-0460.2021.07.037 [51] 冯军,张博为,冯子辉,等. 松辽盆地北部致密砂岩储集层原油可动性影响因素[J]. 石油勘探与开发, 2019, 46(2):312-321. doi:10.11698/PED.2019.02.11 FENG Jun, ZHANG Bowei, FENG Zihui, et al. Crude oil mobility and its controlling factors in tight sand reservoirs in northern Songliao Basin, China[J]. Petroleum Exploration and Development, 2019, 46(2): 312–321. doi: 10.11698/PED.2019.02.11 [52] 史云清,贾英,潘伟义,等. 低渗致密气藏注超临界CO2 驱替机理[J]. 石油与天然气地质, 2017, 38(3):610-616. doi:10.11743/ogg20170321 SHI Yunqing, JIA Ying, PAN Weiyi, et al. Mechanism of supercritical CO2 flooding in low-permeability tight gas reservoirs[J]. Oil and Gas Geology, 2017, 38(3): 610–616. doi: 10.11743/ogg20170321 [53] 任颖惠,吴珂,何康宁,等. 核磁共振技术在研究超低渗-致密油储层可动流体中的应用——以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1):103-110. REN Yinghui, WU Ke, HE Kangning, et al. Application of NMR technique to movable fluid of ultra-low permeability and tight reservoir: A case study on the Yanchang Formation in Longdong Area, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(1): 103–110. [54] 王斌,孙卫,张茜,等. 姬塬油田长6 储层可动流体赋存特征及渗流能力分析[J]. 石油化工应用,2016,35(10):80-86. doi:10.3969/j.issn.1673-5285.2016.10.020 WANG Bin, SUN Wei, ZHANG Qian, et al. Characteristics of movable fluids saturation and research on seepage ability in Chang 6 Reservoir in Jiyuan Oilfield[J]. Petrochemical Industry Application, 2016, 35(10): 80–86. doi: 10.3969/j.issn.1673-5285.2016.10.020 [55] 王梦茜,孙卫,魏虎. 鄂尔多斯盆地板桥—合水地区长6储层可动流体赋存特征及影响因素[J]. 非常规油气, 2018, 5(3):68-73. doi:10.3969/j.issn.1673-8217.2017.05.004 WANG Mengqian, SUN Wei, WEI Hu. The characteristics of movable fluid and its influencing factors of Chang 6 Reservoir in Banqiao–Heshui Area, Ordos Basin[J]. Unconventional Oil and Gas, 2018, 5(3): 68–73. doi: 10.3969/j.issn.1673-8217.2017.05.004 |
[1] | WEI Bing, LI Qinzhi, LIU Chenggang. Methods of Time Scaling-up for Spontaneous Imbibition [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(5): 61-73. |
[2] | WANG Xiangzeng, GAO Tao, LIANG Quansheng, DANG Hailong. Research and Field Practice of Moderate Mild Water Injection Technology in Low Permeability Tight Reservoir [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 62-70. |
[3] | BAI Hui, TIAN Min, FENG Min, LIU Pengcheng, WANG Haitao. Productivity Model and its Influencing Factors for Multistage Fractured Horizontal Wells in Low Permeability Reservoirs [J]. 西南石油大学学报(自然科学版), 2019, 41(3): 113-120. |
[4] | YANG Zhengming, MA Zhuangzhi, XIAO Qianhua, GUO Hekun, LUO Yutian. Method for All-scale Pore-throat Measurements in Tight Reservoir Cores and Its Application [J]. 西南石油大学学报(自然科学版), 2018, 40(3): 97-104. |
[5] | LI Hongjian1, WANG Run1*, DU Qingzhen2, XIE Gang2, ZHANG Peilun3. Wellbore Corrosion Factors Study in NR Oilfield [J]. 西南石油大学学报(自然科学版), 2016, 38(1): 146-151. |
[6] | Kang Yili1*, Zhang Dujie1, You Lijun1, Xu Chengyuan1, Yu Haifeng2. Mechanism and Control Methods of the Working Fluid Damages in Fractured Tight Reservoirs [J]. 西南石油大学学报(自然科学版), 2015, 37(3): 77-84. |
[7] | Wang ke;Dai Junsheng;Jia Kaifu;Fu Xiaolong;Zhang Yi. Research on Development Regularity of Structural Fractures inSand-mud Interbed of A Gas Field,Kuqa Depression [J]. 西南石油大学学报(自然科学版), 2013, 35(2): 63-70. |
[8] | Zhang Shaonan;Ding Xiaoqi;Wan Youli;Xiong Di;Zhu Zhiliang. Formation Mechanism and Distribution of Clay Minerals of Deeply TightSiliciclastic Reservoirs [J]. 西南石油大学学报(自然科学版), 2012, 34(3): 174-182. |
[9] | ZHANG Dong-li;LI Jiang-long;WU Yu-shu. INFLUENCING FACTORS OF THE NUMERICAL WELL TEST MODEL OF THE TRIPLE-CONTINUUM IN FRACTURED VUGGY RESERVOIR [J]. 西南石油大学学报(自然科学版), 2010, 32(6): 113-120. |
[10] | ZHANG Xin-guo; QIN Qi-rong HUO Jin et al. CHARACTERISTICS OF THE FRACTURES IN CARBONIFEROUS RESERVOIRS, AT THE ZONE 9, KRAMAY OILFIELD [J]. 西南石油大学学报(自然科学版), 2007, 29(2): 75-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||