[1] 蒋廷学,周健,张旭,等. 深层页岩气井裂缝扩展及导流特性研究及展望[J]. 中国科学:物理学力学天文学, 2017,47(11):114603. doi:10.1360/SSPMA2016-00535 JIANG Tingxue, ZHOU Jian, ZHANG Xu, et al. Overview and prospect of fracture propagation and conductivity characteristics in deep shale gas wells[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(11):114603. doi:10.1360/SSPMA2016-00535 [2] 蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017, 37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 [3] 李玉丹,董平川,周大伟,等. 页岩气藏微裂缝表观渗透率动态模型研究[J]. 岩土力学, 2018, 39(增1):42-50. doi:10.16285/j.rsm.2017.2218 LI Yudan, DONG Pingchuan, ZHOU Dawei, et al. A dynamic model of apparent permeability for micro fractures in shale gas reservoirs[J]. Rock and Soil Mechanics, 2018, 39(S1):42-50. doi:10.16285/j.rsm.2017.2218 [4] 李德旗,何封,欧维宇,等. 页岩气水平井缝内砂塞分段工艺的增产机理[J]. 天然气工业, 2018, 38(1):56-66. doi:10.3787/j.issn.1000-0976.2018.01.007 LI Deqi, HE Feng, OU Weiyu, et al. Mechanism of multistage sand filling stimulation in horizontal shale gas well development[J]. Natural Gas Industry, 2018, 38(1):56-66. doi:10.3787/j.issn.1000-0976.2018.01.007 [5] 车明光,王永辉,彭建新,等. 深层超深层裂缝性致密砂岩气藏加砂压裂技术——以塔里木盆地大北、克深气藏为例[J]. 天然气工业, 2018, 38(8):63-68. doi:10.3787/j.issn.1000-0976.2018.08.009 CHE Mingguang, WANG Yonghui, PENG Jianxin, et al. Sand fracturing technologies for deep and ultra-deep fractured tight sandstone gas reservoirs:A case study of Dabei and Keshen gas reservoirs in the Tarim Basin[J]. Natural Gas Industry, 2018, 38(8):63-68. doi:10.3787/j.issn.-1000-0976.2018.08.009 [6] 考佳玮,金衍,付卫能,等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报,2018,37(6):1332-1339. doi:10.13722/j.cnki.jrme.-2018.0030 KAO Jiawei, JIN Yan, FU Weineng, et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6):1332-1339. doi:10.13722/j.cnki.jrme.2018.0030 [7] 尹丛彬. 页岩压裂裂缝渗透率的测试与分析[J]. 天然气工业, 2018, 38(3):60-68. doi:10.3787/j.issn.1000-0976.2018.03.007 YIN Congbin. Test and analysis on the permeability of fractured fractures in shale reservoirs[J]. Natural Gas Industry, 2018, 38(3):60-68. doi:10.3787/j.issn.1000-0976.2018.03.007 [8] CIPOLLA C L, LOLON E P, ERDLE J C, et al. Reservoir modeling in shale-gas reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(4):638-653. doi:10.2118/125530-MS [9] 王力. 大庆外围低渗透储层自支撑压裂机理研究[D]. 大庆:东北石油大学, 2016. WANG Li. The mechanism of self-supporting fracturing in Daqing's peripheral low permeability reservoir[D]. Daqing:Northeast Petroleum University, 2016. [10] 邹雨时,张士诚,马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程,2013,13(18):5152-5157. doi:10.3969/j.issn.1671-1815.2013.18.013 ZOU Yushi, ZHANG Shicheng, MA Xinfang. Research on the formation conditions and conductivity of shear fracture for hydraulic fracturing in gas-shale[J]. Science Technology and Engineering, 2013, 13(18):5152-5157. doi:10.3969/j.issn.1671-1815.2013.18.013 [11] ZHANG Junjing, KAMENOV A, ZHU D, et al. Laboratory measurement of hydraulic fracture condutivities in the Barnett shale[C]. SPE 163839-MS, 2013. doi:10.2118/163839-MS [12] RASOULI V, HOSSEINIAN A. Correlations developed for estimation of hydraulic parameters of rough fractures through the simulation of JRC flow channels[J]. Rock Mech Rock Eng, 2011, 44:447-461. doi:10.1007/s00603-011-0148-3 [13] JAVADI M, SHARIFZADEH M, SHAHRIAR K, et al. Critical Reynolds number for nonlinear flow through rough-walled fractures:The role of shear processes[J]. Water Resources Research, 2014, 50(2):1789-1804. doi:10.1002/2013WR014610 [14] LIU Richeng, LI Bo, JIANG Yujing, et al. Review:Mathematical expressions for estimating equivalent permeability of rock fracture networks[J]. Hydrogeology Journal, 2016, 24(7):1623-1649. doi:10.1007/s10040-016-1441-8 [15] 曹平,贾洪强,刘涛影,等. 岩石节理表面三维形态特征的分形分析[J]. 岩石力学与工程学报, 2011, 30(增2):3839-3843. CAO Ping, JIA Hongqiang, LIU Taoying, et al. Fractal analysis of Three-dimensional topography characteristics of rock joint surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2):3839-3843. [16] 庄园. 基于数字化表征的酸蚀裂缝导流能力研究[D]. 成都:西南石油大学, 2014. [17] 白翔. 基于刻蚀形态数字化表征的酸蚀裂缝导流能力研究[D]. 成都:西南石油大学, 2015. [18] 孙骏. 利用分形方法研究裂缝面形态特征[D]. 成都:成都理工大学, 2015. SUN Jun. Study of fracture surface morphology characteristics by using fractal method[D]. Chengdu:Chengdu Univerisity of Technology, 2015. [19] LI Bo, JIANG Yujing, KOYAMA T et al. Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3):362-375. doi:10.1016/j.ijrmms.2007.06.004 [20] ISHIBASHI T, WATANABE N, HIRANO N, et al. Beyond laboratory scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):106-124. doi:10.1002/2014JB011555 [21] SAYLES R S, THOMAS T R. Surface topography as a nonstationary random process[J]. Nature, 1978, 271(5644):431-434. doi:10.1038/271431a0 [22] 张学良,黄玉美,傅卫平,等. 粗糙表面法向接触刚度的分形模型[J]. 应用力学学报, 2000, 17(2):31-35. doi:10.3969/j.issn.1000-4939.2000.02.006 ZHANG Xueliang, HUANG Yumei, FU Weiping, et al. Fractal model of normal contact stiffness between rough surfaces[J]. Chinese Journal of Applied Mechanics, 2000, 17(2):31-35. doi:10.3969/j.issn.1000-4939.2000.02.006 [23] 李菊花,郑斌. 微观孔隙分形表征新方法及其在页岩储层中的应用[J]. 天然气工业, 2015, 35(5):52-59. doi:10.3787/j.issn.1000-0976.2015.05.008 LI Juhua, ZHENG Bin. A new method for fractal characterization of microscopic pores and its application in shale reservoirs[J]. Natural Gas Industry, 2015, 35(5):52-59. doi:10.3787/j.issn.1000-0976.2015.05.008 [24] 易成,王长军,张亮,等. 基于两体相互作用问题的粗糙表面形态描述指标系统的研究[J]. 岩石力学与工程学报, 2006, 25(12):2481-2492. doi:10.3321/j.issn:1000-6915.2006.12.014 YI Cheng, WANG Changjun, ZHANG Liang, et al. Study on description index system of rough surface based on Bi-body interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12):2481-2492. doi:10.3321/j.issn:1000-6915.2006.12.014 [25] 王金安,谢和平,田晓燕,等. 岩石断裂表面分形测量的尺度效应[J]. 岩石力学与工程学报, 2000, 19(1):11-17. doi:10.3321/j.issn:1000-6915.2000.01.003 WANG Jinan, XIE Heping, TIAN Xiaoyan, et al. Scale effect on fractal measurement of rock fracture surfaces[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(1):16-17. doi:10.3321/j.issn:1000-6915.2000.-01.003 [26] TAN Xiaohua, LI Xiaoping, LIU Jianyi, et al. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media[J]. Physics Letters A, 2015, 379(39):2458-2465. doi:10.1016/j.physleta.2015.06.025 [27] RIGBY S P, WATTSMITH M J, FLETCHER R S. Simultaneous determination of the pore-length distribution and pore connectivity for porous catalyst supports using integrated nitrogen sorption and mercury porosimetry[J]. Journal of Catalysis, 2004, 227(1):68-76. doi:10.1016/j.jcat.-2004.06.025 [28] FREDD C N, MCCONNELL S B, BONEY C L, et al. Experimental study of fracture conductivity for waterfracturing and conventional fracturing applications[J]. Society of Petroleum Engineers Journal, 2001, 6(3):288-298. doi:10.2118/74138-pa |