[1] ZHAO Xinguan, YANG Yahui. The current situation of shale gas in Sichuan, China[J]. Renewable & Sustainable Energy Reviews, 2015, 50:653-664. doi:10.1016/j.rser.-2015.05.023 [2] WARNER N R, DARRAH T H, JACKSON R B, et al. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(30):11961-11966. doi:10.1073/pnas.1121181109 [3] JACKSON R B, VENGOSH A, DARRAH T H, et al. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28):11250-11255. doi:10.1073/-pnas.1221635110 [4] HOWARTH R W, SANTORO R, INGRAFFEA A. Venting and leaking of methane from shale gas development:Response to Cathles et al.[J]. Climatic Change, 2012, 113(2):537-549. doi:10.1007/s10584-012-0401-0 [5] YOU Fengqi, TAO Ling, GRAZIANO D J, et al. Optimal design of sustainable cellulosic biofuel supply chains:Multiobjective optimization coupled with life cycle assessment and input-output analysis[J]. Aiche Journal, 2012, 58(4):1157-1180. doi:10.1002/aic.12637 [6] SANTIBAÑEZAGUILAR J E, GONZÁLEZCAMPOS J B, PONCEORTEGA J M, et al. Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives[J]. Journal of Cleaner Production, 2014, 65:270-294. doi:10.1016/j.jclepro.2013.08.004 [7] YUE Dajun, YOU Fengqi. Stackelberg-Game-Based modeling and optimization for supply chain design and operations:A mixed integer bilevel programming framework[J]. Computers & Chemical Engineering, 2017, 102:81-95. doi:10.1016/j. compchemeng.2016.07.026 [8] CHENG Xi, HE Li, LU Hongwei, et al. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia[J]. Journal of Hydrology, 2016, 540:412-422. doi:10.1016/j.jhydrol.2016.06.041 [9] GAO Jiyao, YOU Fengqi. Economic and environmental life cycle optimization of noncooperative supply chains and product systems:Modeling framework, mixed-integer bilevel fractional programming algorithm, and shale gas application[J]. ACS Sustainable Chemistry & Engineering, 2017, 5:3362-3381. doi:10.1021/acssuschemeng.-7b00002 [10] ZENG Bo, WEN Junqiang, SHI Jinyue, et al. A multi-level approach to active distribution system planning for efficient renewable energy harvesting in a deregulated environment[J]. Energy, 2016, 96:614-624. doi:10.1016/j.-energy.2015.12.070 [11] CHEN Yizhong, HE Li, GUAN Yanlong, et al. Life cycle assessment of greenhouse gas emissions and waterenergy optimization for shale gas supply chain planning based on multi-level approach:Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales[J]. Energy Conversion & Management, 2017, 134:382-398. doi:10.1016/j.enconman.2016.12.019 [12] 何培,冯连勇, WILBER T. 马塞勒斯页岩气藏单井产量递减规律及可采储量预测[J]. 新疆石油地质, 2015, 36(2):249-252. doi:10.7657/XJPG20150224 HE Pei, FENG Lianyong, WILBER T. Production decline rule and recoverable reserves prediction of Marcellus shale gas well in a production unit, Pennsylvania, US(in Chinese)[J]. Xinjiang Petroleum Geology, 2015, 36(2):249-252. doi:10.7657/XJPG20150224 [13] CHEN Yizhong, LU Hongwei, LI Jing, et al. A leaderfollower-interactive method for regional water resources management with considering multiple water demands and eco-environmental constraints[J]. Journal of Hydrology, 2017, 548:121-134. doi:10.1016/j.jhydrol.2017.02.-015 [14] SINHA S. Fuzzy programming approach to multi-level programming problems[J]. Fuzzy Sets & Systems, 2003, 136(2):189-202. doi:10.1016/S0165-0114(02)00362-7 [15] RAJ R, GHANDEHARIUN S, KUMAR A, A well-towire life cycle assessment of Canadian shale gas for electricity generation in China[J]. Energy, 2016, 111:642-652. doi:10.1016/j.energy.2016.05.079 [16] GAO Jiyao, YOU Fengqi. Shale gas supply chain design and operations toward better economic and life cycle environmental performance:MINLP model and global optimization algorithm[J]. Acs Sustainable Chemistry & Engineering, 2015, 3(7):1282-1291. doi:10.1021/-acssuschemeng.5b00122 [17] PAN Tao, ZHU Xiaodong, YE Yaping. Estimate of lifecycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants:A case study in China[J]. Ecological Engineering, 2011, 37(2):248-254. doi:10.1016/j.-ecoleng.2010.11.014 [18] WEIJERMARS R. US shale gas production outlook based on well roll-out rate scenarios[J]. Applied Energy, 2014, 124(1):283-297. doi:10.1016/j.apenergy.2014.02.058 [19] XI B D, SU J, HUANG G H, et al. An integrated optimization approach and multi-criteria decision analysis for supporting the waste-management system of the city of Beijing, China[J]. Engineering Applications of Artificial Intelligence, 2010, 23:620-631. doi:10.1016/j.engappai.-2010.01.002 [20] SEYEDMOHAMMADI J, SARMADIAN F, JAFARZADEH A A, et al. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops[J]. Geoderma, 2018, 310:178-190. doi:10.1016/j.geoderma.2017.09.012 [21] SUN Liyan, MIAO Chenlin, YANG Li. Ecologicaleconomic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method[J]. Ecological Indicators, 2017, 73:554-558. doi:10.1016/j.ecolind.2016.10.018 [22] 熊雪珍,何新玥,陈星,等. 基于改进TOPSIS法的水资源配置方案评价[J]. 水资源保护, 2016, 32(2):14-20. doi:10.3880/j.issn.1004-6933.2016.02.004 XIONG Xuezhen, HE Xinyue, CHEN Xing, et al. Evaluatio non water resources allocation schemes based on improved TOPSIS[J]. 2016, 32(2):14-20. doi:10.3880/-j.issn.1004-6933.2016.02.004 [23] LI Jing, HE Li, CHEN Yizhong, et al. A bilevel groundwater management model with minimization of stochastic health risks at the leader level and remediation cost at the follower level[J]. Stochastic Environmental Research and Risk Assessment, 2017, 31(10):2547-2571. doi:10.-1007/s00477-016-1351-2 |