[1] 王淑芳,董大忠,王玉满,等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9):1666-1678. doi:10.11764/j.issn.1672-1926.2015.09.1666 WANG Shufang, DONG Dazhong, WANG Yuman, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9):1666-1678. doi:10.11764/j.issn.1672-1926.2015.09.1666 [2] 李新景,胡素云,程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发, 2007, 34(4):392-400. doi:10.3321/j.issn:1000-0747.2007.04.002 LI Xinjing, HU Suyun, CHENG Keming. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 2007, 34(4):392-400. doi:10.3321/j.issn:1000-0747.2007.04.002 [3] 邹才能,董大忠,杨桦,等. 中国页岩气形成条件及勘探实践[J]. 天然气工业, 2011, 31(12):26-39. doi:10.3787/j.issn.1000-0976.2011.12.005 ZOU Caineng, DONG Dazhong, YANG Hua, et al. Conditions of shale gas accumulation and exploration practices in China[J]. Natural Gas Industry, 2011, 31(12):26-39. doi:10.3787/j.issn.1000-0976.2011.12.005 [4] 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016, 36(1):19-32. doi:10.3787/j.issn.1000-0976.2016.01.003 DONG Dazhong, WANG Yuman, LI Xinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1):19-32. doi:10.3787/j.issn.1000-0976.2016.01.003 [5] 胡德高,郭肖,郑爱维,等. 页岩气藏压裂井产能评价及分析[J]. 西南石油大学学报(自然科学版), 2019, 41(6):132-138. doi:10.11885/j.issn.1674-5086.2019.11.17.01 HU Degao, GUO Xiao, ZHENG Aiwei, et al. Productivity evaluation of fractured wells in shale gas reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6):132-138. doi:10.11885/j.issn.1674-5086.2019.11.17.01 [6] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):166-178. doi:10.11698/PED.2016.02.02 ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China:Characteristics, challenges and prospects(II)[J]. Petroleum Exploration and Development, 2016, 43(2):166-178. doi:10.11698/PED.2016.02.02 [7] 马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1):161-169. doi:10.11698/PED.2018.01.18 MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Develop-ment, 2018, 45(1):161-169. doi:10.11698/PED.2018.01.18 [8] 石晶穗萃,何英,吴宗蔚,等. CQ-IGS水平井一体化地质导向技术以在长宁威远国家级页岩气示范区的应用为例[J]. 天然气工业, 2020, 40(5):43-49. doi:10.3787/j.issn.1000-0976.2020.05.005 SHI Jingsuicui, HE Ying, WU Zongwei, et al. Integrated geosteering technology for CQ-IGS horizontal wells and its application in the Changning-Weiyuan national shale gas demonstration area[J]. Natural Gas Industry, 2020, 40(5):43-49. doi:10.3787/j.issn.1000-0976.2020.05.005 [9] 乐宏,常宏岗,范宇,等. 中国页岩气技术标准体系建设与展望[J]. 天然气工业, 2020, 40(4):1-8. doi:10.3787/j.issn.1000-0976.2020.04.001 YUE Hong, CHANG Honggang, FAN Yu, et al. Construction and prospect of China's shale gas technical standard system[J]. Natural Gas Industry, 2020, 40(4):1-8. doi:10.3787/j.issn.1000-0976.2020.04.001 [10] 郭旭升,胡东风,黄仁春,等. 四川盆地深层超深层天然气勘探进展与展望[J]. 天然气工业, 2020, 40(5):1-14. doi:10.3787/j.issn.1000-0976.2020.05.001 GUO Xusheng, HU Dongfeng, HUANG Renchun, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin:Progress and prospect[J]. Natural Gas Industry, 2020, 40(5):1-14. doi:10.3787/j.issn.1000-0976.2020.05.001 [11] 吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4):706-714. doi:10.7623/syxb201404011 WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4):706-714. doi:10.7623/syxb201404011 [12] 杨兆中,李扬,李小刚,等. 页岩气水平井重复压裂关键技术进展及启示[J]. 西南石油大学学报(自然科学版),2019,41(6):75-86. doi:10.11885/j.issn.1674-5086.2019.10.15.05 YANG Zhaozhong, LI Yang, LI Xiaogang, et al. Key technology progress and enlightenment in refracturing of shale gas horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6):75-86. doi:10.11885/j.issn.1674-5086.2019.10.15.05 [13] 雷群,杨立峰,段瑶瑶,等. 非常规油气"缝控储量"改造优化设计技术[J]. 石油勘探与开发, 2018, 45(4):719-726. doi:10.11698/PED.2018.04.18 LEI Qun, YANG Lifeng, DUAN Yaoyao, et al. The "fracture-controlled reserves" based stimulation technology for unconventional oil and gas reservoirs[J]. Petroleum Exploration and Development, 2018, 45(4):719-726. doi:10.11698/PED.2018.04.18 [14] 沈骋,郭兴午,陈马林,等. 深层页岩气水平井储层压裂改造技术[J]. 天然气工业, 2019, 39(10):68-75. doi:10.3787/j.issn.1000-0976.2019.10.008 SHEN Cheng, GUO Xingwu, CHEN Malin, et al. Horizontal well fracturing stimulation technology for deep shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10):68-75. doi:10.3787/j.issn.1000-0976.2019.10.008 [15] 向洪. 马56区块致密油藏"缝控"体积压裂技术[J]. 油气井测试, 2018, 27(4):49-54. doi:10.19680/j.cnki.1004-4388.2018.04.0008 XIANG Hong. "Fracture controlled" volume fracturing technology for tight reservoirs in Ma56 Block[J]. Well Testing, 2018, 27(4):49-54. doi:10.19680/j.cnki.1004-4388.2018.04.0008 [16] 路艳军. 煤岩体积压裂机理研究[D]. 成都:西南石油大学, 2015. LU Yanjun. Mechanism researches of stimulated reservoir volume in coal seams[D]. Chengdu:Southwest Petroleum University, 2015. [17] 杨兆中,刘云锐,张平,等. 煤层气直井地层破裂压力计算模型[J]. 石油学报, 2018, 39(5):578-586. doi:10.7623/syxb201805009 YANG Zhaozhong, LIU Yunrui, ZHANG Ping, et al. A model for calculating formation breakdown pressure in CBM vertical wells[J]. Acta Petrolei Sinica, 2018, 39(5):578-586. doi:10.7623/syxb201805009 [18] CUTHILL D, YANG Wenbo, HARDESTY J. Improved hydraulic fracturing perforation efficiency observed with constant entry hole and constant penetration perforating system[C]. SPE 184878-MS, 2017. doi:10.2118/184878-MS [19] PAUL W, LARRY G, PEARSONC M C. Mining the Bakken II:Pushing the envelope with extreme limited entry perforating[C]. SPE 189880-MS, 2018. doi:10.2118/189880-MS [20] KIRAN S, JAMES B, ALAN R. Extreme limited entry design improves distribution efficiency in plug-n-perf completions:Insights from fiber-optic diagnostics[C]. SPE 184834-MS, 2017. doi:10.2118/184834-MS [21] PAULW, LARRYG, PEARSONCM. Mining the Bakken:Driving cluster efficiency higher using particulate diverters[C]. SPE 184828-MS, 2017. doi:10.2118/184828-MS [22] 范宇,周小金,曾波,等. 密切割分段压裂工艺在深层页岩气Zi2井的应用[J]. 新疆石油地质, 2019, 40(2):223-227. doi:10.7657/XJPG20190217 FAN Yu, ZHOU Xiaojin, ZENG Bo, et al. Application of intensive staged fracturing technology in deep shale gas Well Zi-2[J]. Xinjiang Petroleum Geology, 2019, 40(2):223-227. doi:10.7657/XJPG20190217 [23] 朱维耀,亓倩. 页岩气多尺度复杂流动机理与模型研究[J]. 中国科学, 2016, 46(2):111-119. doi:10.1360/N092016-00015 ZHU Weiyao, QI Qian. Study on the multi-scale nonlinear flow mechanism and model of shale gas[J]. Scientia Sinica Technologica, 2016, 46(2):111-119. doi:10.-1360/N092016-00015 [24] 游利军,徐洁明,康毅力,等. 考虑氧化作用的富有机质页岩吸附水量[J]. 西南石油大学学报(自然科学版), 2019, 41(6):106-116. doi:10.11885/j.issn.1674-5086.2019.09.17.08 YOU Lijun, XU Jieming, KANG Yili, et al. Water absorption of organic shale with oxidation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6):106-116. doi:10.11885/j.issn.1674-5086.2019.09.17.08 [25] 陈守雨,李文权,杜林麟,等. 水力裂缝与天然裂缝相交作用准则研究[J]. 中外能源, 2014, 19(10):37-43. CHEN Shouyu, LI Wenquan, DU Linlin, et al. Research on the acting criteria when hydraulic fracture intersects with natural fracture[J]. Sino-Global Energy, 2014, 19(10):37-43. |