[1] GUO Yang, ZHU Bo, ZHAO Xiang, et al. Dynamic characteristics, and stability of pipe-in-pipe system conveying two-phase flow in thermal environment[J]. Applied Ocean Research, 2020, 103:102333. doi:10.1016/j.apor.2020.102333
[2] ALRSAI M, KARAMPOUR H, ALBERMANI F. On collapse of the inner pipe of a pipe-in-pipe system under external pressure[J]. Engineering Structures, 2018, 172:614-628. doi:10.1016/j.engstruct.2018.06.057
[3] LI M, ZHAO X, LI X, et al. Stability analysis of oil-conveying pipes on two-parameter foundations with generalized boundary condition by means of Green's functions[J]. Engineering Structures, 2018, 173:300-312. doi:10.1016/j.engstruct.2018.07.001
[4] DOAN V P, NISHI Y. Modeling of fluid-structure interaction for simulating vortex-induced vibration of flexible riser:Finite difference method combined with wake oscillator model[J]. Journal of Marine Science and Technology, 2014, 20(2):309-321. doi:10.1007/s00773-014-0284-z
[5] BI Kaiming, HAO Hong. Using pipe-in-pipe systems for subsea pipeline vibration control[J]. Engineering Structures, 2016, 109:75-84. doi:10.1016/j.engstruct.2015.11.018
[6] LI Tianyu. On the formulation of a finite element method for the general pipe-in-pipe structure system:Impact buckling analysis[J]. International Journal of Mechanical Sciences, 2018, 135:72-100. doi:10.1016/j.ijmecsci.2017.11.011
[7] WANG Y, QIAN X D, LIEW J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. International Journal of Impact Engineering, 2014, 72:1-16. doi:10.1016/j.ijimpeng.2014.05.004
[8] ORYNYAK I V, BATURA A S, RADCHENKO S A, et al. Application of the method of initial parameters to analysis of coupled hydromechanical vibrations in piping systems. Part 3:Analysis of forced vibrations in steam piping of WWER-1000 power unit[J]. Strength of Materials, 2012, 44(2):196-204. doi:10.1007/s11223-012-9372-7
[9] SHAHALI P, HADDADPOUR H, KORDKHEILI S A H. Nonlinear dynamics of viscoelastic pipes conveying fluid placed within a uniform external cross flow[J]. Applied Ocean Research, 2020, 94:101970. doi:10.1016/j.apor.2019.101970
[10] MITSUISHI A, SAKOH M, SHIMURA T, et al. Direct numerical simulation of convective heat transfer in a pipe with transverse vibration[J]. International Journal of Heat and Mass Transfer, 2020, 148:119048. doi:10.1016/j.ijheatmasstransfer.2019.119048
[11] ZHAO Min, CHENG Liang, AN Hongwei, et al. Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current[J]. Journal of Fluids and Structures, 2014, 50:292-311. doi:10.1016/j.jfluidstructs.2014.05.016
[12] 唐友刚, 樊娟娟, 张杰, 等. 高雷诺数下圆柱顺流向和横向涡激振动分析[J]. 振动与冲击, 2013, 32(13):88-92. doi:10.3969/j.issn.1000-3835.2013.13.017 TANG Yougang, FAN Juanjuan, ZHANG Jie, et al. In line and transverse vortex-induced vibration analysis for a circular cylinder under high Reynolds number[J]. Journal of Vibration and Shock, 2013, 32(13):88-92. doi:10.3969/j.issn.1000-3835.2013.13.017
[13] 及春宁, 邢国源, 张力, 等. 倾斜流作用下柔性立管涡激振动的数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(2):324-331. doi:10.11990/jheu.201609002 JI Chunning, XING Guoyuan, ZHANG Li, et al. Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow[J]. Journal of Harbin Engineering University, 2018, 39(2):324-331. doi:10.11990/jheu.201609002
[14] GAO Yun, FU Shixiao, WANG Jungao, et al. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a flexible cylinder[J]. Ocean Engineering, 2015, 103:40-54. doi:10.1016/j.oceaneng.2015.04.052
[15] 宋磊建, 付世晓, 于大鹏, 等. 剪切流下发生涡激振动的柔性立管阻力特性研究[J]. 力学学报, 2016, 48(2):300-306. doi:10.6052/0459-1879-15-309 SONG Leijian, FU Shixiao, YU Dapeng, et al. Investigation of drag forces for flexible risers undergoing vortex-induced vibration in sheared flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):300-306. doi:10.6052/0459-1879-15-309
[16] 徐万海, 马烨璇, 罗浩, 等. 柔性圆柱涡激振动流体力系数识别及其特性[J]. 力学学报, 2017, 49(4):818-827. doi:10.6052/0459-1879-16-263 XU Wanhai, MA Yexuan, LUO Hao, et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4):818-827. doi:10.6052/0459-1879-16-263
[17] 周阳, 黄维平, 杨斌, 等. 带螺旋侧板立管两向涡激振动的试验研究[J]. 振动与冲击, 2018, 37(17):249-255. doi:10.13465/j.cnki.jvs.2018.17.035 ZHOU Yang, HUANG Weiping, YANG Bin, et al. Tests for vortex-induced vibration in 2-DOF risers with helical strakes[J]. Journal of Vibration and Shock, 2018, 37(17):249-255. doi:10.13465/j.cnki.jvs.2018.17.035
[18] 高云, 张壮壮, 杨斌, 等. 圆柱体横流与顺流方向涡激振动耦合模型研究[J]. 振动与冲击, 2020, 39(11):22-30. doi:10.13465/j.cnki.jvs.2020.11.003 GAO Yun, ZHANG Zhangzhuang, YANG Bin, et al. The study on cross-flow and in-line vortex-induced vibration coupled model of a circular cylinder[J]. Journal of Vibration and Shock, 2020, 39(11):22-30. doi:10.13465/j.cnki.jvs.2020.11.003
[19] GONG Shunfeng, LI Gen. Buckle propagation of pipe-in-pipe systems under external pressure[J]. Engineering Structures, 2015, 84:207-222. doi:10.1016/j.engstruct.2014.11.032
[20] GONG Shunfeng, REN Xiaoge, LIU Chengbin. An experimental and numerical study on inward integral buckle arrestors for pipe-in-pipe systems[J]. Ships and Offshore Structures, 2018, 14(3):265-280. doi:10.1080/17445302.2018.1498185
[21] LIU Z Y, JIANG T L, WANG L, et al. Nonplanar flow-induced vibrations of a cantilevered PIP structure system concurrently subjected to internal and cross flows[J]. Acta Mechanica Sinica, 2019, 35(6):1241-1256. doi:10.1007/s10409-019-00879-6
[22] ZHAO X, CHEN B, LI Y H, et al. Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions[J]. Journal of Sound and Vibration, 2020, 464:115001. doi:10.1016/j.jsv.2019.115001
[23] HAN Fei, DAN Danhui. Free vibration of the complex cable system:An exact method using symbolic computation[J]. Mechanical Systems and Signal Processing, 2020, 139:106636. doi:10.1016/j.ymssp.2020.106636
[24] VIOLETTE R, LANGRE E D, SZYDLOWSKI J. Computation of vortex-induced vibrations of long structures using a wake oscillator model:Comparison with DNS and experiments[J]. Computers & Structures, 2007, 85(11-14):1134-1141. doi:10.1016/j.compstruc.2006.08.005
[25] FACCHINETTI M L, LANGRE E D, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(2):123-140. doi:10.1016/j.jfluidstructs.2003.12.004
[26] NORBERG C. Fluctuating lift on a circular cylinder:Review and new measurements[J]. Journal of Fluids and Structures, 2003, 17(1):57-96. doi:10.1016/s0889-9746(02)00099-3
[27] LANGRE E D. Frequency lock-in is caused by coupled-mode flutter[J]. Journal of Fluids and Structures, 2006, 22(6-7):783-791. doi:10.1016/j.jfluidstructs.2006.04.008 |