[1] ZOEPPRITZ K, ERDBEBENWELLEN B. On the reflection and penetration of seismic waves through unstable layers[J]. Goettinger Nachr, 1919(1):66-84. [2] SHUEY R T. Simplification of Zoeppritz equations[J]. Geophysics, 1985, 50(4):609-614. doi:10.1190/1.1441-936 [3] BULAND A, OMRE H N. Bayesian linearized AVO inversion[J]. Geophysics, 2003, 68(1):185-198. doi:10.1190/1.1543206 [4] 毛宁波,谢涛,杨凯,等. 裂缝储层地震方位AVO正演模拟研究及应用[J]. 石油天然气学报, 2008, 30(5):59-63. doi:10.3969/j.issn.1000-9752.2008.05.014 MAO Ningbo, XIE Tao, YANG Kai, et al. Azimuthal AVO forward model for fractured reservoirs and its application[J]. Journal of Oil and Gas Technology, 2008, 30(5):59-63. doi:10.3969/j.issn.1000-9752.2008.05.014 [5] 张广智,王丹阳,印兴耀. 利用MCMC方法估算地震参数[J]. 石油地球物理勘探, 2011, 46(4):605-609. ZHANG Guangzhi, WANG Danyang, YIN Xingyao. Seismic parameter estimation using Markov Chain Monte Carlo Method[J]. Oil Geophysical Prospecting, 2011, 46(4):605-609. [6] 宗兆云,印兴耀,张峰,等. 杨氏模量和泊松比反射系数近似方程及叠前地震反演[J]. 地球物理学报, 2012, 55(11):3786-3794. doi:10.6038/j.issn.0001-5733.2012.11.025 ZONG Zhaoyun, YIN Xingyao, ZHANG Feng, et al. Reflection coefficient equation and pre-stack seismic inversion with Young's modulus and Poisson ratio[J]. Chinese Journal of Geophysics, 2012, 55(11):3786-3794. doi:10.6038/j.issn.0001-5733.2012.11.025 [7] 张广智,杜炳毅,李海山,等. 页岩气储层纵横波叠前联合反演方法[J]. 地球物理学报, 2014, 57(12):4141-4149. doi:10.6038/cjg20141225 ZHANG Guangzhi, DU Bingyi, LI Haishan, et al. The method of joint pre-stack inversion of PP and P-SV waves in shale gas reservoirs[J]. Chinese Journal of Geophysics, 2014, 57(12):4141-4149. doi:10.6038/cjg20141225 [8] 张瑞,文晓涛,杨吉鑫,等. 杨氏模量和泊松比反射系数近似方程及地震叠前反演[J]. 石油地球物理勘探, 2019, 54(1):145-153. doi:10.13810/j.cnki.issn.1000-7210.2019.01.017 ZHANG Rui, WEN Xiaotao, YANG Jixin, et al. Twoterm reflection coefficient equation with Young's modulus and Poisson ratio and its prestack seismic inversion[J]. Oil Geophysical Prospecting, 2019, 54(1):145-153. doi:10.13810/j.cnki.issn.1000-7210.2019.01.017 [9] GE Zijian, PAN Shulin, LI Jingye, et al. Seismic AVA inversion of elastic and attenuative parameters in viscoelastic media using the Zoeppritz equations[J]. Journal of Applied Geophysics, 2022, 201:104643. doi:10.1016/j.jappgeo.2022.104643 [10] TIKHONOV A N. Regularization of incorrectly posed problems[J]. Soviet Mathematics Doklady, 1963, 4(6):1624-1627. [11] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1-4):259-268. doi:10.1016/0167-2789(92)90242-F [12] WANG Yanfei. Seismic impedance inversion using L1 norm regularization and gradient descent methods[J]. Journal of Inverse and Ill-Posed Problems, 2010, 18(7):823-838. doi:10.1515/jiip.2011.005 [13] ZHANG Fanchang, DAI Ronghuo, LIU Hanging. Seismic inversion based on L1-norm misfit function and total variation regularization[J]. Journal of Applied Geophysics, 2014, 109:111-118. doi:10.1016/j.jappgeo.2014.07.024 [14] LIU Cai, SONG Chao, LU Qi, et al. Impedance inversion based on L1 norm regularization[J]. Journal of Applied Geophysics, 2015, 120:7-13. doi:10.1016/j.jappgeo.2015.06.002 [15] GHOLAMI A. Nonlinear multichannel impedance inversion by total-variation regularization[J]. Geophysics, 2015, 80(5):217-224. doi:10.1190/GEO2015-0004.1 [16] GHOLAMI A. A fast automatic multichannel blind seismic inversion for high-resolution impedance recovery[J]. Geophysics, 2016, 81(5):357-364. doi:10.1190/GEO-2015-0654.1 [17] WANG Dehua, GAO Jinghua, ZHOU Hongan. Datadriven multichannel seismic impedance inversion with anisotropic total variation regularization[J]. Journal of Inverse and Ill-Posed Problems, 2018, 26(2):229-241. doi:10.1515/jiip-2017-0024 [18] WOODWORTH J T, CHARTRAND R. Compressed sensing recovery via nonconvex shrinkage penalties[J]. Inverse Problems, 2016, 32(7):075004. doi:10.1088/02665611/32/7/075004 [19] CHARTRAND R, YIN Wotao. Iteratively reweighted algorithms for compressive sensing[C]. Las Vegas:2008 IEEE International Conference, 2008. doi:10.1109/ICASSP.2008.4518498 [20] LI Shu, HE Yanmin, CHEN Yingpin, et al. Fast multi-trace impedance inversion using anisotropic total p-variation regularization in the frequency domain[J]. Journal of Geophysics and Engineering, 2018, 15(5):2171-2182. doi:10.1088/1742-2140/aaca4a [21] CHEN Yingpin, PENG Zhenming, GHOLAMI A, et al. Seismic signal sparse time-frequency representation by Lp-quasinorm constraint[J]. Digital Signal Processing, 2019, 87:43-59. doi:10.1016/j.dsp.2019.01.010 [22] WU Hao, HE Yanmin, CHEN Yingpin, et al. Seismic acoustic impedance inversion using mixed second-order fractional ATpV regularization[J]. IEEE Access, 2020, 8:3442-3452. doi:10.1109/ACCESS.2019.2962552 [23] LIU Yangting, LIU Chenguang, XIE Chengliang, et al. A hybrid regularization operator and its application in seismic inversion[J]. IEEE Access, 2021, 9:378-387. doi:10.1109/ACCESS.2021.3106912 [24] CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted L1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14:877-905. doi:10.1007/s00041-008-9045-x [25] RUSU C, DUMITRESCU B. Iterative reweighted L1 design of sparse FIR filters[J]. Signal Processing, 2012, 92(4):905-911. doi:10.1016/j.sigpro.2011.09.031 [26] MA Peifeng, LIN Hui, LAN Hengxing, et al. On the performance of reweighted L1 minimization for tomographic SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):895-899. doi:10.1109/LGRS.2014.2365613 [27] 宋昱,孙文赟. 基于重加权L1范数的边缘保持图像平滑算法[J]. 华南理工大学学报(自然科学版), 2021, 49(6):109-121. doi:10.12141/j.issn.1000-565X.200231 SONG Yu, SUN Wenyun. Edge-preserving image smoothing algorithm based on reweighted L1 norm[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(6):109-121. doi:10.12141/j.issn.1000-565X.200231 [28] HE Liangsheng, WU Hao, WEN Xiaotao, et al. Seismic acoustic impedance inversion using reweighted L1-norm sparse constraint[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [29] AKI K I, RICHARDS P G. Quantitative seismology:Theory and methods[J]. Earth-Science Reviews, 1981, 17(3):296-297. doi:10.1016/0012-8252(81)90044-1 |