[1] 贾浩宸,刘玉博,赵小春,等. 鄂尔多斯盆地吴起油田长 6段地层古压力及其对油气聚集作用的分析[J]. 非常规油气, 2023, 10(5): 56-64. doi: 10.19901/j.fcgyq.2023.05.08 JIA Haochen, LIU Yubo, ZHAO Xiaochun, et al. Formation pressure restoration and its effect on oil and gas accumulation in Chang6 Member of Wuqi Oilfield, Ordos Basin[J]. Unconventional Oil & Gas, 2023, 10(5): 56-64. doi: 10.19901/j.fcgyq.2023.05.08 [2] 代林锋,陈世加,王攀,等. 鄂尔多斯盆地延长组长7 段致密砂岩储层物性差异对含油性的影响[J]. 世界石油工业, 2023, 30(3): 42-52. doi: 10.20114/j.issn.1006-0030.20230511001 DAI Linfeng, CHEN Shijia, WANG Pan, et al. Effect of physical properties difference on oil content for tight sandstone reservoirs in Chang 7 member of Yanchang Formation, Ordos Basin[J]. World Petroleum Industry, 2023, 30(3): 42-52. doi: 10.20114/j.issn.1006-0030.20230511-001 [3] 马晓强,邹婧芸,祝彦贺. 鄂尔多斯盆地东北缘临兴东区断阶带致密气富集规律研究[J]. 非常规油气, 2023, 10(3): 1-7. doi: 10.19901/j.fcgyq.2023.03.01 MA Xiaoqiang, ZOU Jingyun, ZHU Yanhe. Study on enrichment law of tight gas in the fault step zone of Linxing East Block, northeast margin of Ordos Basin[J]. Unconventional Oil & Gas, 2023, 10(3): 1-7. doi: 10.19901/j.fcgyq.2023.03.01 [4] 张梦雅,李严严,左通,等. 鄂尔多斯盆地南部长7 段富有机质页岩微观结构特征[J]. 世界石油工业, 2024, 31(6): 38-45. doi: 10.20114/j.issn.1006-0030.202401-30002 ZHANG Mengya, LI Yanyan, ZUO Tong, et al. Microstructural characterization of organic-rich shale in Ordos Yanchang Formation[J]. World Petroleum Industry, 2024, 31(6): 38-45. doi: 10.20114/j.issn.1006-0030.2024-0130002 [5] 胡勇,彭先,李骞,等. 四川盆地深层海相碳酸盐岩气藏开发技术进展与发展方向[J]. 天然气工业, 2019, 39(9): 48-57. doi: 10.3787/j.issn.1000-0976.2019.09.006 HU Yong, PENG Xian, LI Qian, et al. Progress and development direction of technologies for deep marine carbonate gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(9): 48-57. doi: 10.3787/j.issn.1000-0976.2019.09.006 [6] 马永生. 四川盆地普光超大型气田的形成机制[J]. 石油学报, 2007, 28(2): 9-14, 21. doi: 10.3321/j.issn:0253-2697.2007.02.002 MA Yongsheng. Generation mechanism of Puguang Gas Field in Sichuan Basin[J]. Acta Petrolei Sinica, 2007, 28(2): 9-14, 21. doi: 10.3321/j.issn:0253-2697.2007.02.002 [7] 刘忠宝. 四川盆地自流井组页岩油气地质特征及富集规律[J]. 世界石油工业, 2024, 31(3): 35-47. doi: 10.20114/j.issn.1006-0030.20240104001 LIU Zhongbao. Geological characteristics and enrichment regular patterns of shale oil and gas at Ziliujing Formation in Sichuan Basin[J]. World Petroleum Industry, 2024, 31(3): 35-47. doi: 10.20114/j.issn.1006-0030.20240104-001 [8] 余智超,王志章,魏荷花,等. 塔河油田缝洞型油藏不同成因岩溶储集体表征[J]. 油气地质与采收率, 2019, 26(6): 53-61. doi: 10.13673/j.cnki.cn37-1359/te.2019.06.007 YU Zhichao, WANG Zhizhang, WEI Hehua, et al. Characterization of fracture-cave karst reservoirs with different genesis in Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 53-61. doi: 10.13673/j.cnki.cn37-1359/te.2019.06.007 [9] 朱莲花,徐珊. 塔里木盆地顺北地区1 号、 5号断裂带奥陶系原油地球化学特征及控藏因素[J]. 世界石油工业, 2024, 31(4): 58-68. doi: 10.20114/j.issn.1006-0030.20240507004 ZHU Lianhua, XU Shan. Geochemical characteristics and reservoir controlling factors of Ordovician ultra-deep crude oil in No.1 and No.5 fault zones in Shunbei area[J]. World Petroleum Industry, 2024, 31(4): 58-68. doi: 10.20114/j.issn.1006-0030.20240507004 [10] 贾浪波,刘海锋,薛云龙,等. 碳酸盐岩储层孔隙结构表征及储渗能力研究——以鄂尔多斯盆地靖边气田下古马五1+2储层为例[J]. 西安石油大学学报(自然科学版), 2023, 38(4): 38-46. doi: 10.3969/j.issn.1673-064X.2023.04.005 JIA Langbo, LIU Haifeng, XUE Yunlong, et al. Characterization of pore structure of carbonate reservoirs and study of storage and seepage capacity of them: Taking Lower Paleozoic Ma 51+2 reservoir in Jingbian Gasfield of Ordos Basin as an example[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(4): 38-46. doi: 10.3969/j.issn.1673-064X.2023.04.005 [11] 王轲, 慈兴华, 杜焕福, 等. 塔里木盆地顺北碳酸盐岩元素地球化学特征与油气富集机制[J]. 世界石油工业, 2024, 31(2): 55-64. doi: 10.20114/j.issn.1006-0030.20231210001 WANG Ke, CI Xinghua, DU Huanfu, et al. Geochemical characteristics and oil & gas enrichment mechanisms of carbonate rocks in Shunbei area of Tarim Basin[J]. World Petroleum Industry, 2024, 31(2): 55-64. doi: 10.20114/j.issn.1006-0030.20231210001 [12] 马新华. 四川盆地天然气发展进入黄金时代[J]. 天然气工业, 2017, 37(2): 1-10. doi: 10.3787/j.issn.1000-0976.2017.02.001 MA Xinhua. A golden era for natural gas development in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(2): 1-10. doi: 10.3787/j.issn.1000-0976.2017.02.001 [13] 李勇,于清艳,李保柱,等. 缝洞型有水油藏动态储量及水体大小定量评价方法[J]. 中国科学(技术科学), 2017, 47(7): 708-717. doi: 10.1360/N092016-00286 LI Yong, YU Qingyan, LI Baozhu, et al. Quantitative evaluation method of OOIP and aquifer size for fracturedcaved carbonate reservoirs with active aquifer support[J]. Scientia Sinica Technologica, 2017, 47(7): 708-717. doi: 10.1360/N092016-00286 [14] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发, 2019, 46(3): 552-558. doi: 10.11698/PED.2019.03.13 JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552-558. doi: 10.11698/PED.2019.03.13 [15] 王璐,杨胜来,刘义成,等. 缝洞型碳酸盐岩储层气水两相微观渗流机理可视化实验研究[J]. 石油科学通报, 2017, 2(3): 364-376. doi: 10.3969/j.issn.2096-1693.2017.03.034 WANG Lu, YANG Shenglai, LIU Yicheng, et al. Visual experimental investigation of gas-water two phase micro seepage mechanisms in fracture-cavity carbonate reservoirs[J]. Petroleum Science Bulletin, 2017, 2(3): 364-376. doi: 10.3969/j.issn.2096-1693.2017.03.034 [16] 张烈辉,李成勇,赵玉龙,等. 裂缝性碳酸盐岩油气藏渗流机理研究进展[J]. 地球科学, 2017, 42(8): 1273-1286. doi: 10.3799/dqkx.2017.101 ZHANG Liehui, LI Chengyong, ZHAO Yulong, et al. Review on the seepage mechanisms of oil and gas flow in fractured carbonate reservoirs[J]. Earth Science, 2017, 42(8): 1273-1286. doi: 10.3799/dqkx.2017.101 [17] 康博,张烈辉,王健,等. 裂缝孔洞型碳酸盐岩凝析气井出水特征及预测[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 107-113. doi: 10.11885/j.issn.1674-5086.2015.07.24.01 KANG Bo, ZHANG Liehui, WANG Jian, et al. Features and forecast of water output in fractured vuggy carbonate condensate reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(1): 107-113. doi: 10.11885/j.issn.1674-5086.2015.07.24.01 [18] 冯曦,彭先,李隆新,等. 碳酸盐岩气藏储层非均质性对水侵差异化的影响[J]. 天然气工业, 2018, 38(6): 67-75. doi: 10.3787/j.issn.1000-0976.2018.06.009 FENG Xi, PENG Xian, LI Longxin, et al. Influence of reservoir heterogeneity on water invasion differentiation in carbonate gas reservoirs[J]. Natural Gas Industry, 2018, 38(6): 67-75. doi: 10.3787/j.issn.1000-0976.2018.06.009 [19] 郭程飞,李华斌,陶冶,等. 碳酸盐岩气藏水侵模拟与剩余气分布的核磁共振实验研究[J]. 中南大学学报(英文版), 2020, 27(2): 531-541. GUO Chengfei, LI Huabin, TAO Ye, et al. Water invasion and remaining gas distribution in carbonate gas reservoirs using core displacement and NMR[J]. Journal of Central South University, 2020, 27(2): 531-541. [20] 张筠,吴见萌,朱国璋. 致密气核磁共振测井观测模式及气水弛豫分析——以四川盆地为例[J]. 天然气工业, 2018, 38(1): 49-55. doi: 10.3787/j.issn.1000-0976.2018.01.006 ZHANG Yun, WU Jianmeng, ZHU Guozhang. NMR logging activation sets selection and fluid relaxation characteristics analysis of tight gas reservoirs: A case study from the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(1): 49-55. doi: 10.3787/j.issn.1000-0976.2018.01.006 [21] 鄢友军,李隆新,徐伟,等. 三维数字岩心流动模拟技术在四川盆地缝洞型储层渗流研究中的应用[J]. 天然气地球科学, 2017, 28(9): 1425-1432. doi: 10.11764/j.issn.1672-1926.2017.08.018 YAN Youjun, LI Longxin, XU Wei, et al. Application of 3D digital core flow simulation technique in the study of gas flow in fractured-vuggy gas reservoirs in Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(9): 1425-1432. doi: 10.11764/j.issn.1672-1926.2017.08.018 [22] 黄兴,李天太,杨沾宏,等. 孔洞型碳酸盐岩油藏不同开发方式物理模拟研究[J]. 断块油气田, 2016, 23(1): 81-85. doi: 10.6056/dkyqt201601018 HUANG Xing, LI Tiantai, YANG Zhanhong, et al. Physical simulation for different development of vuggy carbonate reservoir[J]. Fault-Block Oil and Gas Field, 2016, 23(1): 81-85. doi: 10.6056/dkyqt201601018 [23] 陈建勋,杨胜来,吕琦,等. 非均质深层碳酸盐岩气藏衰竭开发规律实验研究[J]. 西安石油大学学报(自然科学版), 2023, 38(4): 47-54. doi: 10.3969/j.issn.1673-064X.2023.04.006 CHEN Jianxun, YANG Shenglai, LÜ Qi, et al. Experimental study on depletion development laws of deep heterogeneous carbonate gas reservoirs[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(4): 47-54. doi: 10.3969/j.issn.1673-064X.2023.04.006 [24] 吴建发,郭建春,赵金洲. 裂缝性地层气水两相渗流机理研究[J]. 天然气工业, 2004, 24(11): 85-87. doi: 10.3321/j.issn:1000-0976.2004.11.026 WU Jianfa, GUO Jianchun, ZHAO Jinzhou. Study on gas/water two-phase percolation mechanism for fractured formations[J]. Natural Gas Industry, 2004, 24(11): 85-87. doi: 10.3321/j.issn:1000-0976.2004.11.026 [25] 李登伟,张烈辉,周克明,等. 可视化微观孔隙模型中气水两相渗流机理[J]. 中国石油大学学报(自然科学版), 2008, 32(3): 80-83. doi: 10.3321/j.issn:1673-5005.2008.03.017 LI Dengwei, ZHANG Liehui, ZHOU Keming, et al. Gaswater two-phase flow mechanism in visual microscopic pore model[J]. Journal of China University of Petroleum (Edition of natural science), 2008, 32(3): 80-83. doi: 10.3321/j.issn:1673-5005.2008.03.017 [26] 吕金龙,卢祥国,王威,等. 致密砂岩孔隙中气水分布规律可视化实验[J]. 特种油气藏, 2019, 26(4): 136-141. doi: 10.3969/j.issn.1006-6535.2019.04.024 LÜ Jinlong, LU Xiangguo, WANG Wei, et al. Visual test of gas-water distribution in tight sandstone pores[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 136-141. doi: 10.3969/j.issn.1006-6535.2019.04.024 [27] HUANG Haibo, HUANG Junjie, LU Xiyun. Study of immiscible displacements in porous media using a color-gradient-based multiphase Lattice Boltzmann Method[J]. Computers & Fluids, 2014, 93(8): 164-172. doi: 10.1016/j.compfluid.2014.01.025 [28] 张晟庭,李靖,陈掌星,等. 基于改进LBM的气液自发渗吸过程中动态润湿效应模拟[J]. 力学学报, 2023, 55(2): 355-368. doi: 10.6052/0459-1879-22-409 ZHANG Shengting, LI Jing, CHEN Zhangxing, et al. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368. doi: 10.6052/0459-1879-22-409 [29] 李东林,王伟之,韩继康,等. 多相流体系中气泡运动特性研究进展[J]. 应用化工, 2023, 52(5) : 1559-1564. doi: 10.16581/j.cnki.issn1671-3206.20230313.005 LI Donglin, WANG Weizhi, HAN Jikang, et al. Research progress of bubble motion characteristics in multiphase flow system[J]. Applied Chemical Industry, 2023, 52(5): 1559-1564. doi: 10.16581/j.cnki.issn1671-3206.202303-13.005 [30] 高宇航,冯凯,张会臣. 基于格子Boltzmann方法的微通道内气液两相流流型和压力降特性研究[J]. 润滑与密封, 2023, 48(7): 27-33. doi: 10.3969/j.issn.0254-0150.2023.07.005 GAO Yuhang, FENG Kai, ZHANG Huichen. Research on gas-liquid two-phase flow pattern and pressure drop characteristics in microchannel based on Lattice Boltzmann Method[J]. Lubrication Engineering, 2023, 48(7): 27-33. doi: 10.3969/j.issn.0254-0150.2023.07.005 [31] ROTHMAN D H, KELLER J M. Immiscible cellularautomaton fluids[J]. Journal of Statistical Physics, 1988, 52(3): 1119-1127. doi: 10.1007/BF01019743 [32] REIS T, PHILLIPS T N. Lattice Boltzmann Model for simulating immiscible two-phase flows[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(14): 4033-4053. doi: 10.1088/1751-8113/40/14/018 [33] LATVA-KOKKO M, ROTHMAN D. Static contact angle in Lattice Boltzmann models of immiscible fluids[J]. Physical Review E, 2005, 72(4): 046701. doi: 10.1103/PhysRevE.72.046701 [34] ZHANG Tao, JAVADPOUR F, LI Jing, et al. Pore-scale perspective of gas/water two-phase flow in shale[J]. SPE Journal, 2021, 26(2): 828-846. doi: 10.2118/205019-PA [35] ZHAO Wen, JIA Chengzao, JIANG Lin, et al. Fluid charging and hydrocarbon accumulation in the sweet spot, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108391. doi: 10.1016/j.petrol.2021.108391 [36] JENNINGS H Y, NEWMAN G H. The effect of temperature and pressure on the interfacial tension of water against methane normal decane mixtures[J]. Society of Petroleum Engineers Journal, 1971, 11(2): 171-175. doi: 10.2118/3071-PA |