大理大学学报 ›› 2022, Vol. 7 ›› Issue (12): 15-19.

• 数学与计算机科学 • 上一篇    下一篇

基于局部特征和全局特征相融合的人脸识别技术研究


  

  1. (闽西职业技术学院, 福建龙岩 364030
  • 收稿日期:2022-05-04 出版日期:2022-12-15 发布日期:2022-12-15
  • 作者简介:徐飞,讲师,主要从事物联网技术、图像识别技术、系统开发和测试研究。
  • 基金资助:
    福建省中青年教师教育科研项目(JZ181053)

Research on Face Recognition Technology Based on Fusion of Local Features and Global Features

  1. Minxi Vocational and Technical College Longyan Fujian 364030 China

     

  • Received:2022-05-04 Online:2022-12-15 Published:2022-12-15

摘要: 为解决不可抗拒因素干扰导致识别率不高的问题,构建采集人脸图像的局部特征和全局特征并相融合识别的系统。采用主成分分析(PCA)和局部二值模式(LBP)分别提取图像的全局特征矩阵和LBP局部特征谱,构造出人脸图像集合的相关联集合,并提取人脸特征值。通过ORL数据库人脸图片集比较单一PCA算法和PCA+LBP算法在不同维度和不同样本数下的识别效果。同时,基于支持向量机算法利用Matlab设计一个GUI界面实现打开、训练、识别、分类人脸图像功能的人脸识别系统。结果表明,通过局部和全局提取特征值融合能够提高人脸识别准确率,GUI界面的人脸识别系统满足应用需求。

关键词: 人脸识别, 主成分分析, 局部二值化, 向量机分类器

Abstract:

In order to solve the problem of low recognition rate caused by the interference of irresistible factors a system is constructed to collect local and global features of face images and fuse them for recognition. The principal component analysis PCA and local binary pattern LBP are used to extract the global feature matrix and LBP local feature spectrum of the image respectively to construct an associated set of face image sets and extract face feature values. The recognition effects of a single PCA algorithm and a PCA+LBP algorithm in different dimensions and different sample numbers are compared through the ORL database face image set. At the same time a GUI interface based on support vector machine algorithm and Matlab is designed to open train recognize and classify face images. The results show that the accuracy of face recognition can be improved by the fusion of local and global extracted feature values and the face recognition system of GUI interface can meet the application requirements.

Key words: face recognition, principal component analysis, local binarization, vector machine classifier

中图分类号: